62 research outputs found

    Density functional study of copper segregation in aluminum

    Get PDF
    The structural and electronic properties of Cu segregation in aluminum are studied in the framework of the density functional theory, within the projector augmented plane-wave method and both its local density approximation (LDA) and generalized gradient approximation (GGA). We first studied Al–Cu interactions in bulk phase at low copper concentration (≤3.12%: at). We conclude to a tendency to the formation of a solid solution at T=0 K. We moreover investigated surface alloy properties for varying compositions of a Cu doped Al layer in the (111) Al surface then buried in an (111) Al slab. Calculated segregation energies show unstable systems when Cu atoms are in the surface position (position 1). In the absence of ordering effects for Cu atoms in a layer (xCu=1/9 and xCu=1/3), the system is more stable when the doped layer is buried one layer under the surface (position 2), whereas for xCu=1/2 to xCu=1 (full monolayer), the doped layer is more accommodated when buried in the sub-sub-surface (position 3). First stage formation of GP1- and GP2-zones was finally modeled by doping (100) Al layers with Cu clusters in a (111) Al slab, in the surface then buried one and two layers under the surface. These multilayer clusters are more stable when buried one layer beneath the surface. Systems modeling GP1-zones are more stable than systems modeling GP2-zones. However the segregation of a full copper (100) monolayer in an (100) Al matrix shows a copper segregation deep in the bulk with a segregation barrier. Our results fit clearly into a picture of energetics and geometrical properties dominated by preferential tendency to Cu clustering close to the (111) Al surface

    Density functional theoretical study of Cun, Aln (n = 4–31) and copper doped aluminum clusters: Electronic properties and reactivity with atomic oxygen

    Get PDF
    A DFT study of the electronic properties of copper doped aluminum clusters and their reactivity with atomic oxygen is reported. Firstly we performed calculations for the pure Cun and Aln (n = 4, 9, 10, 13, 25 and 31) clusters and we determined their atomization energy for some frozen conformations at the B3PW91 level. The calculated work functions and M–M (M = Cu, Al) bond energies of the largest clusters are comparable with experimental data. Secondly, we focused our attention on the change of the electronic properties of the systems upon the substitution of an Al atom by a Cu one. This latter stabilizes the system as the atomization energy of the 31- atoms cluster increases of 0.31 eV when the substitution is done on the surface and of 1.18 eV when it is done inside the cluster. We show that the electronic transfer from the Al cluster to the Cu atom located at the surface is large (equal to 0.7 e) while it is negligible when Cu is inserted in the Aln cluster. Moreover, the DOS of the Al31 and Al30Cu systems are compared. Finally, the chemisorption energies of atomic oxygen in threefold sites of the Al31, Cu31 and Al30Cu clusters are calculated and discussed. We show that the chemisorption energy of O is decreasing on the bimetallic systems compared to the pure aluminum cluster

    Periodic density functional study of Rh and Pd interaction with the (100)MgO surface

    Get PDF
    The adsorption geometry and electronic properties of palladium and rhodium atoms deposited on the regular (100)MgO surface were analyzed by means of periodic DFT calculations using local, gradient-corrected and hybrid (B3LYP) functionals. Spin-polarized computations revealed doublet spin state of Rh atom to be the most stable electronic state for the adsorbed rhodium atom on (100)MgO. The preferred adsorption site of the metal (Pd and Rh) atoms was found to be the site on top of the surface oxygen atoms. A relatively stable geometry for the adsorption of the Pd and Rh in a bridge position above the two surface oxygens was found as well. The electronic structures suggested partly covalent bonding with contribution from electrostatic attraction between the metal and the oxygen atoms for both optimized structures. Small charge transfer was obtained from the support to the Pd and Rh metal atoms. The calculations showed that rhodium was bound stronger to the substrate probably due to stronger polarization effects

    A DFT study of the G3-Factor and derivatives

    Get PDF
    We present theoretical studies of the G3-Factor and two derivatives, the methylated (G3Me) and the fluorinated (G3F) endoperoxides. These endoperoxides were previously tested as alternative drugs against the parasite causing malaria. They showed promisin activity.The geometry of each compound was optimized in its lowest singlet and triplet spin states at the B3LYP/6-311G* level of theory. It was followed by a NBO analysis. The ground state of the G-Factors is a singlet. The geometric parameters found by the DFT calculations are in agreement with available experimental results. The spin density distribution for the triplet state shows a biradical molecule. The singlet–triplet splitting is of 36.60, 33.96 and 34.09 kcal/mol (B3LYP/6-311G*) and of 36.07, 33.51 and 33.60 kcal/mol (B3LYP/6-311++G**) for the G3-Factor and the G3Me and G3F derivatives, respectively

    Aqueous extraction of residual oil from sunflower press cake using a twin-screw extruder: Feasibility study

    Get PDF
    The objective of this study was to evaluate the feasibility of an aqueous process to extract the residual oil from sunflower press cakes using a co-rotating twin-screw extruder. Two different configurations were tested: the expression from whole seeds followed by the aqueous extraction, in two successive apparatus or in the same one. For the aqueous extraction stage, the oil yield depended on the operating conditions including screw rotation speed, screw profile, and inlet flow rates of press cakes and water. Liquid/solid separation required the addition of a lignocellulosic residue (wheat straw), upstream from the filtration zone. However, even with maximum fiber inlet flow (around 20% of the inlet flow rate of the solid matters for the highest amount of wheat straw), drying of the cake meal did not improve. The lixiviation of the material was also incomplete. Oil yield was better when the expression and the aqueous extraction were conducted in the same extruder. For all the trials carried out using such a configuration, the corresponding cake meal contained less than 10% residual oil, and the total oil yield was 78% in the best operating conditions. Nevertheless, the contribution of the aqueous extraction stage was extremely limited, less than 5% in the best trial, partly due to a ratio of the water to the press cake too low. For the aqueous extraction stage, the oil was extracted in the form of an oil-in-water emulsion whose stability was minimized because of its low proteins content due to their thermomechanical denaturation during the expression stage

    A DFT study of the NO adsorption on Pdn (n = 1–4) clusters

    Get PDF
    We report a density-functional study of some properties of the adsorption process of the NO molecule on small palladium clusters (n = 1–4). The interaction between NO and the Pdn clusters is studied on various adsorption sites. Both, NO and Pdn geometrical relaxations are taken into account. The significant conformational reconstruction of the metallic cluster upon NO adsorption induces a large decrease of the NO adsorption energy. Nevertheless, the N–O binding energy is strongly weakened when the molecule is adsorbed on the small Pdn clusters due essentially to an electrostatic repulsion between both N and O atoms. The possible dissociation process of NO on Pd4 cluster is then investigated within two processes: the NO molecule does not dissociate on Pd4 with process (i) (dissociation of the isolated gas phase NO molecule followed by the adsorption of both nitrogen and oxygen atoms on the cluster). Process (ii)which presents three successive steps (adsorption of the NO molecule, dissociation of the NO molecule adsorbed on Pd4, adsorption of the O atom on the cluster) is studied in details and we propose a reaction pathway locating transition states and intermediate species. The activation energy for process (ii) is high and the dissociation of the NO molecule on the Pd4 cluster is thus highly improbable

    Direct extraction of oil from sunflower seeds by twin-screw extruder according to an aqueous extraction process: Feasibility study and influence of operating conditions

    Get PDF
    The objective of this study was to evaluate the feasibility of an aqueous process to extract sunflower seed oil using a co-rotating twin-screw extruder. Aqueous extraction was carried out using whole seeds and the influence of the operating conditions on oil yield was examined. Operating conditions included screw profile, screw rotation speed, and input flow rates of sunflower seeds and water. Liquid/solid separation required the addition of a lignocellulosic residue upstream from the filtration zone. However, even with maximum fiber input flow, drying of the cake meal did not improve. The lixiviation of the sunflower seeds was also incomplete. The aqueous extraction of the oil was more efficient in the twin-screw extruder than the reference trial conducted in a batch reactor. The best oil extraction yield obtained was approximately 55% and the residual oil content of the cake meal was approximately 30%. The hydrophobic phases produced were oil-in-water emulsions. These emulsions were stabilized by phospholipids and proteins at the interface, which are natural surface-active agents co-extracted during the process

    Effect of catalytic conditions on the synthesis of new aconitate esters

    Get PDF
    Sugar cane is a crop which generates large amounts of biomass and a juice rich in highvalue natural molecules. After extracting sugar from the juice, the recovering of various compounds such as organic acids contained in molasses could contribute to increase the competivity of the sugar industry. Therefore, according to the biorefinery approach, we propose to study the chemical conversion of one of these acids, the aconitic acid, by esterification reactions. A new series of aconitate esters have been synthesized by combining aconitic acid and alcohols from natural origin. The effects of experimental conditions have been investigated and have shown that the type of catalysis has a significant effect on the selectivity. Kinectics have thus been performed to determine the best conditions to synthetize enriched compositions in esters. Homogeneous catalysis generates the highest yield in triester. Heterogeneous catalysis(macroporous resins) is prefered for the production of monoesters while catalysis assisted by ionic liquid is adapted to prepare mainly diesters. Green indicators have been discussed according to the calculations performed. The resulting polyfunctional esters are totally biosourced molecules and have a great potential as bioproducts for different applications

    8-Hydroxyquinoline complexes (Alq3) on Al(111): atomic scale structure, energetics and charge distribution

    Get PDF
    8-Hydroxyquinoline (8Hq) is known to efficiently inhibit the corrosion of aluminium by forming metal–organic layers (8Hq forms complexes with aluminium atoms). In the present work, the atomic scale structure and the energetics of 8-hydroxyquinoline complexes (Alq3) adsorbed on an aluminium surface are investigated by dispersion-corrected DFT computations. Two scenarios are considered: (i) an Alq3 complex, previously formed in vacuum, is deposited on a flat Al(111) surface or (ii) three deprotonated 8Hq molecules (q) directly adsorb on a defective Al(111) surface presenting Al adatoms (Al–Al(111)). For the Alq3 formation in vacuum, each addition of a q molecule on the Al atom stabilises the system, the oxidation state of the Al atom evolving from AlI in Alq to AlIII in Alq2 and Alq3. The subsequent deposition of Alq3 on Al(111) leads to a strong bonding between the q molecules of the complex and the Al(111) surface, with a significant electron transfer occurring from the surface to the complexes (0.73 to 1.57 e). The formation on the metal surface of Alq3 complexes via the adsorption of q molecules on an Al adatom leads to more stable structures than the ones obtained from direct adsorption of Alq3 on Al(111). For the most stable adsorption conformation, the three q molecules are bonded to the Al adatom but only two are bonded to the aluminium surface. In that case, the total electron transfer from the Al–Al(111) surface to the q molecules is 4.40 e and the electron transfer from the Al(111) surface to the Alq3-like species is 2.04 e. The structure, energetics and charge distribution data demonstrate an iono-covalent bonding between the q molecules and the Al atoms, in the complex as well as on the aluminium surface

    DFT Simulation of XPS Reveals Cu/Epoxy Polymer Interfacial Bonding

    Get PDF
    Experiments and computations are performed to assess the interfacial bonding between Cu and a poly-epoxy surface relevant to many applications. The surface of the poly-epoxy is characterized by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy before and after ultrahigh vacuum Cu deposition. Modifications of the XPS spectra are observed, suggesting a strong interaction between specific C and O atoms of the surface with Cu. Density functional theory (DFT) calculations are then performed to simulate XPS spectra and to better understand bonding. DFT computations are performed in the framework of the uGTS methodology, which takes initial and final state effects into account, and allows to calculate chemical shifts between the different C 1s and O 1s molecular orbitals with good accuracy, for the pristine surface. DFT calculations are then set to determine the preferential adsorption sites of Cu on different sites of the polymer surface. Finally, XPS simulation of the C 1s and O 1s spectra with Cu adsorbed at these sites matches very well with the experimental spectra, indicating that Cu atoms interact preferentially with hydroxyls to form Cu−O−C bonds, stabilized by a transfer of 0.5 electrons from Cu to O; hence, Cu is partially oxidized
    corecore