47 research outputs found

    Inclusion of a Furin Cleavage Site Enhances Antitumor Efficacy against Colorectal Cancer Cells of Ribotoxin α-Sarcin- or RNase T1-Based Immunotoxins

    Get PDF
    Immunotoxins are chimeric molecules that combine the specificity of an antibody to recognize and bind tumor antigens with the potency of the enzymatic activity of a toxin, thus, promoting the death of target cells. Among them, RNases-based immunotoxins have arisen as promising antitumor therapeutic agents. In this work, we describe the production and purification of two new immunoconjugates, based on RNase T1 and the fungal ribotoxin α-sarcin, with optimized properties for tumor treatment due to the inclusion of a furin cleavage site. Circular dichroism spectroscopy, ribonucleolytic activity studies, flow cytometry, fluorescence microscopy, and cell viability assays were carried out for structural and in vitro functional characterization. Our results confirm the enhanced antitumor efficiency showed by these furin-immunotoxin variants as a result of an improved release of their toxic domain to the cytosol, favoring the accessibility of both ribonucleases to their substrates. Overall, these results represent a step forward in the design of immunotoxins with optimized properties for potential therapeutic application in vivo

    Synergistic action of actinoporin isoforms from the same sea anemone species assembled into functionally active heteropores

    Get PDF
    Among the toxic polypeptides secreted in the venom of sea anemones, actinoporins are pore forming toxins whose toxic activity relies on the formation of oligomeric pores within biological membranes. Intriguingly, actinoporins appear as multigene families which give rise to many protein isoforms in the same individual displaying high sequence identities but large functional differences. However, the evolutionary advantage of producing such similar isotoxins is not fully understood. Here, using sticholysins I and II (StnI and StnII) from the sea anemone Stichodactyla helianthus, it is shown that actinoporin isoforms can potentiate each other’s activity. Through hemolysis and calcein releasing assays, it is revealed that mixtures of StnI and StnII are more lytic than equivalent preparations of the corresponding isolated isoforms. It is then proposed that this synergy is due to the assembly of heteropores since (i) StnI and StnII can be chemically cross-linked at the membrane and (ii) the affinity of sticholysin mixtures for the membrane is increased with respect to any of them acting in isolation, as revealed by isothermal titration calorimetry experiments. These results help to understand the multigene nature of actinoporins and may be extended to other families of toxins that require oligomerization to exert toxicity

    Synergistic Action of Actinoporin Isoforms from the Same Sea Anemone Species Assembled into Functionally Active Heteropores

    Get PDF
    Among the toxic polypeptides secreted in the venom of sea anemones, actinoporins are the pore-forming toxins whose toxic activity relies on the formation of oligomeric pores within biological membranes. Intriguingly, actinoporins appear as multigene families that give rise to many protein isoforms in the same individual displaying high sequence identities but large functional differences. However, the evolutionary advantage of producing such similar isotoxins is not fully understood. Here,using sticholysins I and II (StnI and StnII) from the sea anemone Stichodactyla helianthus, it is shown that actinoporin isoforms can potentiate each other’s activity. Through hemolysis and calcein releasing assays, it is revealed that mixtures of StnI and StnII are more lytic than equivalent preparations of the corresponding isolated isoforms. It is then proposed that this synergy is due to the assembly of heteropores because (i) StnI and StnII can be chemically cross-linked at the membrane and (ii) the affinity of sticholysin mixtures for the membrane is increased with respect to any of them acting in isolation, as revealed by isothermal titration calorimetry experiments. These results help us understand the multigene nature of actinoporins and may be extended to other families of toxins that require oligomerization to exert toxicity

    Minimized natural versions of fungal ribotoxins show improved active site plasticity

    Get PDF
    Fungal ribotoxins are highly specific extracellular RNases which cleave a single phosphodiester bond at the ribosomal sarcin-ricin loop, inhibiting protein biosynthesis by interfering with elongation factors. Most ribotoxins show high degree of conservation, with similar sizes and amino acid sequence identities above 85%. Only two exceptions are known: Hirsutellin A and anisoplin, produced by the entomopathogenic fungi Hirsutella thompsonii and Metarhizium anisopliae, respectively. Both proteins are similar but smaller than the other known ribotoxins (130 vs 150 amino acids), displaying only about 25% sequence identity with them. They can be considered minimized natural versions of their larger counterparts, best represented by α-sarcin. The conserved α-sarcin active site residue Tyr48 has been replaced by the geometrically equivalent Asp, present in the minimized ribotoxins, to produce and characterize the corresponding mutant. As a control, the inverse anisoplin mutant (D43Y) has been also studied. The results show how the smaller versions of ribotoxins represent an optimum compromise among conformational freedom, stability, specificity, and active-site plasticity which allow these toxic proteins to accommodate the characteristic abilities of ribotoxins into a shorter amino acid sequence and more stable structure of intermediate size between that of other nontoxic fungal RNases and previously known larger ribotoxins

    Der p 1 based immunotoxin as potential tool for the treatment of dust mite respiratory allergy

    Get PDF
    Immunotoxins appear as promising therapeutic molecules, alternative to allergen-specifcimmunotherapy. In this work, we achieved the development of a protein chimera able to promote specifc cell death on efector cells involved in the allergic reaction. Der p 1 allergen was chosen as cell-targeting domain and the powerful ribotoxin α-sarcin as the toxic moiety. The resultant construction, named proDerp1αS, was produced and purifed from the yeast Pichia pastoris. Der p 1-protease activity and α-sarcin ribonucleolytic action were efectively conserved in proDerp1αS. Immunotoxin impact was assayed by using efector cells sensitized with house dust mite-allergic sera. Cell degranulation and death, triggered by proDerp1αS, was exclusively observed on Der p 1 sera sensitized-humRBL-2H3 cells, but not when treated with non-allergic sera. Most notably, equivalent IgE-binding and degranulation were observed with both proDerp1αS construct and native Der p 1 when using purifed basophils from sensitized patients. However, proDerp1αS did not cause any cytotoxic efect on these cells, apparently due to its lack of internalization after their surface IgEbinding, showing the complex in vivo panorama governing allergic reactions. In conclusion, herein we present proDerp1αS as a proof of concept for a potential and alternative new designs of therapeutic tools for allergies. Development of new, and more specifc, second-generation of immunotoxins following proDerp1αS, is further discussed

    Involvement of loops 2 and 3 of alpha-sarcin on its ribotoxic activity

    Get PDF
    Ribotoxins are a family of fungal ribosome-inactivating proteins displaying highly specific ribonucleolytic activity against the sarcin/ricin loop (SRL) of the larger rRNA, with a-sarcin as its best-characterized member. Their toxicity arises from the combination of this activity with their ability to cross cell membranes. The involvement of a-sarcin's loops 2 and 3 in SRL and ribosomal proteins recognition, as well as in the ribotoxin-lipid interactions involving cell penetration, has been suggested some time ago. In the work presented now different mutants have been prepared in order to study the role of these loops in their ribonucleolytic and lipid-interacting properties. The results obtained confirm that loop 3 residues Lys 111, 112, and 114 are key actors of the specific recognition of the SRL. In addition, it is also shown that Lys 114 and Tyr 48 conform a network of interactions which is essential for the catalysis. Lipid-interaction studies show that this Lys-rich region is indeed involved in the phospholipids recognition needed to cross cell membranes. Loop 2 is shown to be responsible for the conformational change which exposes the region establishing hydrophobic interactions with the membrane inner leaflets and eases penetration of ribotoxins target cells

    A deimmunised form of the ribotoxin, α-sarcin, lacking CD4+ T cell epitopes and its use as an immunotoxin warhead

    Get PDF
    Fungal ribotoxins that block protein synthesis can be useful warheads in the context of a targeted immunotoxin. α-Sarcin is a small (17 kDa) fungal ribonuclease produced by Aspergillus giganteus that functions by catalytically cleaving a single phosphodiester bond in the sarcin–ricin loop of the large ribosomal subunit, thus making the ribosome unrecognisable to elongation factors and leading to inhibition of protein synthesis. Peptide mapping using an ex vivo human T cell assay determined that α-sarcin contained two T cell epitopes; one in the N-terminal 20 amino acids and the other in the C-terminal 20 amino acids. Various mutations were tested individually within each epitope and then in combination to isolate deimmunised α-sarcin variants that had the desired properties of silencing T cell epitopes and retention of the ability to inhibit protein synthesis (equivalent to wild-type, WT α-sarcin). A deimmunised variant (D9T/Q142T) demonstrated a complete lack of T cell activation in in vitro whole protein human T cell assays using peripheral blood mononuclear cells from donors with diverse HLA allotypes. Generation of an immunotoxin by fusion of the D9T/Q142T variant to a single-chain Fv targeting Her2 demonstrated potent cell killing equivalent to a fusion protein comprising the WT α-sarcin. These results represent the first fungal ribotoxin to be deimmunised with the potential to construct a new generation of deimmunised immunotoxin therapeutics

    EChemTest: sistema de evaluaciĂłn de la Calidad en QuĂ­mica

    Get PDF
    Este proyecto plantea la herramienta EChemTest como mecanismo de evaluación de la Calidad de un Grado relacionado con la Química. También presenta la oportunidad de evaluar cómo ha influido la docencia online en la adquisición de conocimientos, comparando con cursos anteriores
    corecore