43 research outputs found

    PolyQ Tract Toxicity in SCA1 is Length Dependent in the Absence of CAG Repeat Interruption

    Get PDF
    Spinocerebellar ataxia type 1 (SCA1) is an autosomal dominant neurodegenerative disorder caused by an expansion of a polyglutamine tract within the ATXN1 gene. Normal alleles have been reported to range from 6 to 35 repeats, intermediate alleles from 36 to 38 repeats and fully penetrant pathogenic alleles have at least 39 repeats. This distribution was based on relatively few samples and the narrow intermediate range makes the accuracy of the repeat sizing crucial for interpreting and reporting diagnostic tests, which can vary between laboratories. Here, we examine the distribution of 6378 SCA1 chromosomes and identify a very late onset SCA1 family with a fully penetrant uninterrupted pathogenic allele containing 38 repeats. This finding supports the theory that polyQ toxicity is related to the increase of the length of the inherited tracts and not as previously hypothesized to the structural transition occurring above a specific threshold. In addition, the threshold of toxicity shifts to a shorter polyQ length with the increase of the lifespan in SCA1. Furthermore, we show that SCA1 intermediate alleles have a different behavior compared to the other polyglutamine disorders as they do not show reduced penetrance when uninterrupted. Therefore, the pathogenic mechanism in SCA1 is distinct from other cytosine-adenine-guanine (CAG) repeat disorders. Accurately sizing repeats is paramount in precision medicine and can be challenging particularly with borderline alleles. We examined plasmids containing cloned CAG repeat tracts alongside a triplet repeat primed polymerase chain reaction (TP PCR) CAG repeat ladder to improve accuracy in repeat sizing by fragment analysis. This method accurately sizes the repeats irrespective of repeat composition or length. We also improved the model for calculating repeat length from fragment analysis sizing by fragment analyzing 100 cloned repeats of known size. Therefore, we recommend these methods for accurately sizing repeat lengths and restriction enzyme digestion to identify interruptions for interpretation of a given allele’s pathogenicity

    Specialist multidisciplinary input maximises rare disease diagnoses from whole genome sequencing

    Get PDF
    Diagnostic whole genome sequencing (WGS) is increasingly used in rare diseases. However, standard, semi-automated WGS analysis may overlook diagnoses in complex disorders. Here, we show that specialist multidisciplinary analysis of WGS, following an initial 'no primary findings' (NPF) report, improves diagnostic rates and alters management. We undertook WGS in 102 adults with diagnostically challenging primary mitochondrial disease phenotypes. NPF cases were reviewed by a genomic medicine team, thus enabling bespoke informatic approaches, co-ordinated phenotypic validation, and functional work. We enhanced the diagnostic rate from 16.7% to 31.4%, with management implications for all new diagnoses, and detected strong candidate disease-causing variants in a further 3.9% of patients. This approach presents a standardised model of care that supports mainstream clinicians and enhances diagnostic equity for complex disorders, thereby facilitating access to the potential benefits of genomic healthcare. This research was made possible through access to the data and findings generated by the 100,000 Genomes Project: http://www.genomicsengland.co.uk

    Complexity of the Genetics and Clinical Presentation of Spinocerebellar Ataxia 17

    Get PDF
    Spinocerebellar ataxia type 17 (SCA17) is a rare autosomal dominant neurodegenerative disease caused by a CAG repeat expansion in the TATA-box binding protein gene (TBP). The disease has a varied age at onset and clinical presentation. It is distinct from other SCAs for its association with dementia, psychiatric symptoms, and some patients presenting with chorea. For this reason, it is also called Huntington’s disease-like 4 (HDL-4). Here we examine the distribution of SCA17 allele repeat sizes in a United Kingdom-based cohort with ataxia and find that fully penetrant pathogenic alleles are very rare (5 in 1,316 chromosomes; 0.38%). Phenotype-genotype correlation was performed on 30 individuals and the repeat structure of their TBP genes was examined. We found a negative linear correlation between total CAG repeat length and age at disease onset and, unlike SCA1, there was no correlation between the longest contiguous CAG tract and age at disease onset. We were unable to identify any particular phenotypic trait that segregated with particular CAG/CAA repeat tract structures or repeat lengths. One individual within the cohort was homozygous for variable penetrance range SCA17 alleles. This patient had a similar age at onset to heterozygotes with the same repeat sizes, but also presented with a rapidly progressive dementia. A pair of monozygotic twins within the cohort presented 3 years apart with the sibling with the earlier onset having a more severe phenotype with dementia and chorea in addition to the ataxia observed in their twin. This appears to be a case of variable expressivity, possibly influenced by other environmental or epigenetic factors. Finally, there was an asymptomatic father with a severely affected child with an age at onset in their twenties. Despite this, they share the same expanded allele repeat sizes and sequences, which would suggest that there is marked difference in the penetrance of this 51-repeat allele. We therefore propose that the variable penetrance range extend from 48 repeats to incorporate this allele. This study shows that there is variability in the presentation and penetrance of the SCA17 phenotype and highlights the complexity of this disorder

    Complexity of the Genetics and Clinical Presentation of Spinocerebellar Ataxia 17

    Get PDF
    Spinocerebellar ataxia type 17 (SCA17) is a rare autosomal dominant neurodegenerative disease caused by a CAG repeat expansion in the TATA-box binding protein gene (TBP). The disease has a varied age at onset and clinical presentation. It is distinct from other SCAs for its association with dementia, psychiatric symptoms, and some patients presenting with chorea. For this reason, it is also called Huntington’s disease-like 4 (HDL-4). Here we examine the distribution of SCA17 allele repeat sizes in a United Kingdom-based cohort with ataxia and find that fully penetrant pathogenic alleles are very rare (5 in 1,316 chromosomes; 0.38%). Phenotype-genotype correlation was performed on 30 individuals and the repeat structure of their TBP genes was examined. We found a negative linear correlation between total CAG repeat length and age at disease onset and, unlike SCA1, there was no correlation between the longest contiguous CAG tract and age at disease onset. We were unable to identify any particular phenotypic trait that segregated with particular CAG/CAA repeat tract structures or repeat lengths. One individual within the cohort was homozygous for variable penetrance range SCA17 alleles. This patient had a similar age at onset to heterozygotes with the same repeat sizes, but also presented with a rapidly progressive dementia. A pair of monozygotic twins within the cohort presented 3 years apart with the sibling with the earlier onset having a more severe phenotype with dementia and chorea in addition to the ataxia observed in their twin. This appears to be a case of variable expressivity, possibly influenced by other environmental or epigenetic factors. Finally, there was an asymptomatic father with a severely affected child with an age at onset in their twenties. Despite this, they share the same expanded allele repeat sizes and sequences, which would suggest that there is marked difference in the penetrance of this 51-repeat allele. We therefore propose that the variable penetrance range extend from 48 repeats to incorporate this allele. This study shows that there is variability in the presentation and penetrance of the SCA17 phenotype and highlights the complexity of this disorder

    Role of Repeat Tract Structure and the rs7158733 SNP in Spinocerebellar Ataxia 3

    No full text
    Spinocerebellar ataxia 3 (SCA3) is a neurodegenerative condition caused by an expansion of a polyglutamine tract within the ATXN3 gene. Normal alleles range from 12 to 44 repeats, while pathogenic alleles have 52 repeats or more. The canonical ATXN3 repeat tract sequence includes three interruptions at positions 3 (CAA), 4 (AAG), and 6 (CAA). The intragenic rs7158733 single-nucleotide polymorphism (SNP) flanks the ATXN3 repeat region and substitutes a TAC1118 tyrosine codon with a TAA1118 stop codon, resulting in a shorter ataxin-3aS isoform. We examined the distribution of SCA3 allele repeat sizes in a UK-based cohort presenting with an ataxic phenotype. The 6596 alleles showed a clear gap between normal and expanded alleles, with no intermediate alleles containing 41 to 57 repeats. We used clone sequencing to characterize the structure of the ATXN3 repeat region in a sub-cohort of 44 SCA3 patients. We observed that the three canonical interruptions were typically preserved. There was no association of the interruptions with age at onset detected in this cohort, given the limited power of this sub-cohort. We genotyped the rs7158733 SNP in a sub-cohort of 79 SCA3 patients and found that 74.7% of expanded alleles carried the A1118 variant, which was associated with earlier disease onset. This study highlights the importance of rs7158733 genotyping alongside ATXN3 repeat sizing for patient evaluation, as this SNP modifies the effect of repeat size on age at onset in SCA3 for pathogenic alleles up to 69 repeats

    Detection of novel mutations and review of published data suggests that hereditary spastic paraplegia caused by spastin (SPAST) mutations is found more often in males

    Full text link
    Background: Hereditary spastic paraplegia (HSP) is characterised in its pure form by slowly progressive spastic paraparesis. Around 40% of autosomal dominant (AD) cases are caused by mutations in SPAST, encoding spastin.Patients and methods: The clinical and investigation details of all patients with a SPAST mutation identified through our centre were reviewed. All published reports of SPAST mutations where the sex of patients was given were subsequently analysed in order to determine whether there is evidence of one sex being preferentially affected.Results: In total 22 probable pathogenic changes were detected, including 11 novel ones. One patient carried two adjacent missense mutations. The pathogenicity of a further novel missense mutation is uncertain. Most patients had a pure phenotype, although mild peripheral neuropathy was sometimes present. The total number of patients with SPAST mutations was 27, as three of the previously known mutations were present in more than one person. The excess of males over females in our population (17:10) prompted us to review all published studies where the sex of the patients was given (n = 31). A significant excess of males was identified (ratio 1.29, p = 0.0007).Conclusions: Our results are consistent with data suggesting that SPAST mutations mostly cause a pure HSP phenotype. The excess of males in our sample and in published reports suggests that penetrance or severity may be sex-dependent, and merits further investigation as it may have important implications for counselling. (C) 2011 Elsevier B.V. All rights reserved

    Friedreich's Ataxia Frequency in a Large Cohort of Genetically Undetermined Ataxia Patients

    No full text
    Background: Patients with suspected genetic ataxia are often tested for Friedreich's ataxia (FRDA) and/or a variety of spinocerebellar ataxias (SCAs). FRDA can present with atypical, late-onset forms and so may be missed in the diagnostic process. We aimed to determine FRDA-positive subjects among two cohorts of patients referred to a specialist ataxia centre either for FRDA or SCA testing to determine the proportion of FRDA cases missed in the diagnostic screening process.Methods: 2000 SCA-negative ataxia patients, not previously referred for FRDA testing (group A), were tested for FRDA expansions and mutations. This group was compared with 1768 ataxia patients who had been previously referred for FRDA testing (group B) and were therefore more likely to have a typical presentation. The phenotypes of positive cases were assessed through review of the clinical case notes.Results: Three patients (0.2%) in group A had the FRDA expansion on both alleles, compared with 207 patients (11.7%) in group B. The heterozygous carrier rate across both cohorts was of 41 out of 3,768 cases (1.1%). The size of the expansions in the three FRDA-positive cases in group A was small, and their presentation atypical with late-onset.Conclusions: This study demonstrates that FRDA is very rare among patients who were referred purely for SCA testing without the clinical suspicion of FRDA. Such cases should be referred to specialist ataxia centres for more extensive testing to improve patient management and outcomes.</jats:p
    corecore