24 research outputs found

    A Switched Capacitor Digital SineWave Mixer for Software Defined Radio

    Get PDF
    This paper proposes a discrete-time mixer: the sampled RF input is multiplied by digital sinewave-LO samples. The multiplication is implemented by charge sharing between a unary weighted sampling capacitor and an output capacitor. Spurious responses as low as -56dBc are achieved due to the good linearity and matching properties of capacitors. Four 5GS/s time-interleaved samplers are implemented to cover the entire RF range from 0.1GHz to 4.9GHz, while simultaneously providing 50Ω impedance matching. Any radio channel narrower than 20MHz in this RF range can be received at a fixed 20GS/s sample rate. The worst case spurious response, caused by time-errors in the interleaving clock phases, is at -36dBc (uncalibrated). Other measured parameters, of the 28nm CMOS IC occupying an active area of 0.45mm², over the RF band from 1.1 to 4.9GHz are: NF=14dB-16dB (single-side band), IIP3>+12dBm, P1dB>+2dBm, and P=135mW at a fixed RF sample rate of 20GS/s

    Quantitative dynamic near-infrared fluorescence imaging using indocyanine green for analysis of bowel perfusion after mesenteric resection

    No full text
    Significance: Near-infrared (NIR) fluorescence imaging using indocyanine green (ICG) has proven to be a feasible application for real-time intraoperative assessment of tissue perfusion, although quantification of NIR fluorescence signals is pivotal for standardized assessment of tissue perfusion. Aim: Four patients are described with possible compromised bowel perfusion after mesenteric resection. Based on these patients we want to emphasize the difficulties in the quantification of NIR fluorescence imaging for perfusion analysis. Approach: During image-guided fluorescence assessment, 5 mg of ICG ([Formula: see text]) was intravenously administered by the anesthesiologist. NIR fluorescence imaging was done with the open camera system of Quest Medical Imaging. Fluorescence data taken from the regions of interest (bowel at risk, transition zone of bowel at risk and adjacent normally perfused bowel, and normally perfused reference bowel) were quantitatively analyzed after surgery for fluorescence intensity-and perfusion time-related parameters. Results: Bowel perfusion, as assessed clinically by independent surgeons based on NIR fluorescence imaging, resulted in different treatment strategies, three with excellent clinical outcome, but one with a perfusion related complication. Post-surgery quantitative analysis of fluorescence dynamics showed different patterns in the affected bowel segment compared to the unaffected reference segments for the four patients. Conclusions: Similar intraoperative fluorescence results could lead to different surgical treatment strategies, which demonstrated the difficulties in interpretation of uncorrected fluorescence signals. Real-time quantification and standardization of NIR fluorescence perfusion imaging could probably aid surgeons in the nearby future

    Elevated CEA and CA19-9 serum levels independently predict advanced pancreatic cancer at diagnosis

    No full text
    Purpose: It is suggested that tumour markers carcinoembryonic antigen (CEA) and carbohydrate antigen 19-9 (CA19-9) could be used to predict the stage of pancreatic cancer. However, optimal cut-off values for CEA and CA19-9 are disputable. This study aimed to assess the value of CEA and CA19-9 serum levels at diagnosis of pancreatic ductal adenocarcinoma (PDAC) as predictors for the advanced stage of PDAC in patients discussed at pancreatic multidisciplinary team (MDT) meetings. Methods: Patients with suspected PDAC discussed at MDT meetings from 2013 to 2017 were reviewed, in order to determine optimal cut-off values of both CEA and CA19-9. Results: In total, 375 patients were included. Optimal cut-off values for predicting advanced PDAC were 7.0 ng/ml for CEA and 305.0 U/ml for CA19-9, resulting in positive predictive values of 83.3%, 73.6%, and 91.4% for CEA, CA19-9 and combined, respectively. Both tumour markers were independent predictors of advanced PDAC, demonstrated by an odds ratio of 4.21 (95% CI:1.85–9.56; p = 0.001) for CEA and 2.58 for CA19-9 (95% CI:1.30–5.14; p = 0.007). Conclusions: CEA appears to be a more robust predictor of advanced PDAC than CA19-9. Implementing CEA and CA19-9 serum levels during MDT meetings as an additional tool for establishing tumour resectability is worthwhile for tailored diagnostics

    The clinical usefulness of optical coherence tomography during cancer interventions

    Get PDF
    International audienceTumor detection and visualization plays a key role in the clinical workflow of a patient with suspected cancer, both in the diagnosis and treatment. Several optical imaging techniques have been evaluated for guidance during oncological interventions. Optical coherence tomography (OCT) is a technique which has been widely evaluated during the past decades. This review aims to determine the clinical usefulness of OCT during cancer interventions focussing on qualitative features, quantitative features and the diagnostic value of OCT

    Near-Infrared Fluorescence Imaging of Pancreatic Cancer Using a Fluorescently Labelled Anti-CEA Nanobody Probe: A Preclinical Study

    No full text
    Molecular fluorescence-guided surgery using near-infrared light has the potential to improve the rate of complete resection of cancer. Typically, monoclonal antibodies are being used as targeting moieties, however smaller fragments, such as single-domain antibodies (i.e., Nanobodies®) improve tumor specificity and enable tracer injection on the same day as surgery. In this study, the feasibility of a carcinoembryonic antigen-targeting Nanobody (NbCEA5) conjugated to two zwitterionic dyes (ZW800-1 Forte [ZW800F] and ZW800-1) for visualization of pancreatic ductal adenocarcinoma (PDAC) was investigated. After site-specific conjugation of NbCEA5 to the zwitterionic dyes, binding specificity was evaluated on human PDAC cell lines with flow cytometry. A dose escalation study was performed for both NbCEA5-ZW800F and NbCEA5-ZW800-1 in mice with subcutaneously implanted pancreatic tumors. Fluorescence imaging was performed up to 24 h after intravenous injection. Furthermore, the optimal dose for NbCEA5-ZW800-1 was injected in mice with orthotopically implanted pancreatic tumors. A dose-escalation study showed superior mean fluorescence intensities for NbCEA5-ZW800-1 compared to NbCEA5-ZW800F. In the orthotopic tumor models, NbCEA5-ZW800-1 accumulated specifically in pancreatic tumors with a mean in vivo tumor-to-background ratio of 2.4 (SD = 0.23). This study demonstrated the feasibility and potential advantages of using a CEA-targeted Nanobody conjugated to ZW800-1 for intraoperative PDAC imaging

    Detection of cutaneous oxygen saturation using a novel snapshot hyperspectral camera

    Get PDF
    Background: Tissue necrosis, a consequence of inadequate tissue oxygenation, is a common post-operative complication. As current surgical assessments are often limited to visual and tactile feedback, additional techniques that can aid in the interrogation of tissue viability are needed to improve patient outcomes. In this bi-institutional pilot study, the performance of a novel snapshot hyperspectral imaging camera to detect superficial cutaneous oxygen saturation (StO2) was evaluated. Methods: Healthy human volunteers were recruited at two participating centers. Cutaneous StO2 of the forearm was determined by a snapshot hyperspectral camera on two separate study days during occlusionreperfusion of the brachial artery and after induction of local vasodilation. To calculate the blood StO2 at each pixel in the multispectral image, spectra were selected, and fitting was performed over wavelengths ranging from 470 to 950 nm. Results: Quantitative detection of physiological changes in cutaneous StO2 levels was feasible in all sixteen volunteers. A significant (P&lt;0.001) decrease in cutaneous StO2 levels from 78.3% (SD: 15.3) at baseline to 60.6% (SD: 19.8) at the end of occlusion phase was observed, although StO2 levels returned to baseline after five minutes. Mean cutaneous StO2 values were similar in the same subjects on separate study days (Pearson R2: 0.92 and 0.77, respectively) at both centers. Local vasodilation did not yield significant changes in cutaneous StO2 values. Conclusions: This pilot study demonstrated the feasibility of a snapshot hyperspectral camera for detecting quantitative physiological changes in cutaneous StO2 in normal human volunteers, and serves as a precursor for further validation in perioperative studies. </p

    Validation of full-field optical coherence tomography in distinguishing malignant and benign tissue in resected pancreatic cancer specimens

    No full text
    Background: Pancreatic cancer is the fourth leading cause of cancer-related mortality in the United States. The minority of patients can undergo curative-intended surgical therapy due to progressive disease stage at time of diagnosis. Nonetheless, tumor involvement of surgical margins is seen in up to 70% of resections, being a strong negative prognostic factor. Real-time intraoperative imaging modalities may aid surgeons to obtain tumor-free resection margins. Full-field optical coherence tomography (FF-OCT) is a promising diagnostic tool using high-resolution white-light interference microscopy without tissue processing. Therefore, we composed an atlas of FF-OCT images of malignant and benign pancreatic tissue, and investigated the accuracy with which the pathologists could distinguish these. Materials and methods: One hundred FF-OCT images were collected from specimens of 29 patients who underwent pancreatic resection for various indications between 2014 and 2016. One experienced gastrointestinal pathologist and one pathologist in training scored independently the FF-OCT images as malignant or benign blinded to the final pathology conclusion. Results were compared to those obtained with standard hematoxylin and eosin (H&E) slides. Results: Overall, combined test characteristics of both pathologists showed a sensitivity of 72%, specificity of 74%, positive predictive value of 69%, negative predictive value of 79% and an overall accuracy of 73%. In the subset of pancreatic ductal adenocarcinoma patients, 97% of the FF-OCT images (n = 35) were interpreted as tumor by at least one pathologist. Moreover, normal pancreatic tissue was recognised in all cases by at least one pathologist. However, atrophy and fibrosis, serous cystadenoma and neuroendocrine tumors were more often wrongly scored, in 63%, 100% and 25% respectively. Conclusion: FF-OCT could distinguish normal pancreatic tissue from pathologic pancreatic tissue in both processed as non-processed specimens using architectural features. The accuracy in pancreatic ductal adenocarcinoma is promising and warrants further evaluation using improved assessment criteria

    Detection of cutaneous oxygen saturation using a novel snapshot hyperspectral camera: A feasibility study

    No full text
    Background: Tissue necrosis, a consequence of inadequate tissue oxygenation, is a common post-operative complication. As current surgical assessments are often limited to visual and tactile feedback, additional techniques that can aid in the interrogation of tissue viability are needed to improve patient outcomes. In this bi-institutional pilot study, the performance of a novel snapshot hyperspectral imaging camera to detect superficial cutaneous oxygen saturation (StO2) was evaluated. Methods: Healthy human volunteers were recruited at two participating centers. Cutaneous StO2 of the forearm was determined by a snapshot hyperspectral camera on two separate study days during occlusionreperfusion of the brachial artery and after induction of local vasodilation. To calculate the blood StO2 at each pixel in the multispectral image, spectra were selected, and fitting was performed over wavelengths ranging from 470 to 950 nm. Results: Quantitative detection of physiological changes in cutaneous StO2 levels was feasible in all sixteen volunteers. A significant (P<0.001) decrease in cutaneous StO2 levels from 78.3% (SD: 15.3) at baseline to 60.6% (SD: 19.8) at the end of occlusion phase was observed, although StO2 levels returned to baseline after five minutes. Mean cutaneous StO2 values were similar in the same subjects on separate study days (Pearson R2: 0.92 and 0.77, respectively) at both centers. Local vasodilation did not yield significant changes in cutaneous StO2 values. Conclusions: This pilot study demonstrated the feasibility of a snapshot hyperspectral camera for detecting quantitative physiological changes in cutaneous StO2 in normal human volunteers, and serves as a precursor for further validation in perioperative studies
    corecore