12 research outputs found

    Curvature-Based Wavefront Sensor for Use on Extended, Arbitrary, Low-Contract Scenes Final Technical Report August 2004

    No full text
    A small amount of work has been done on this project; the strategy to be adopted has been better defined, though no experimental work has been started. 1) Wavefront error signals: The best choice appears use a lenslet array at a pupil image to produce defocused image pairs for each subaperture. Then use the method proposed by Molodij et al. to produce subaperture curvature signals. Basically, this method samples a moderate number of locations in the image where the value of the image Laplacian is high, then taking the curvature signal from the difference of the Laplacians of the extrafocal images at those locations. The tip-tilt error is obtained from the temporal dependence of the first spatial derivatives of an in-focus image, at selected locations where these derivatives are significant. The wavefront tilt can be obtained from the full-aperture image. 2) Extrafocal image generation: The important aspect here is to generate symmetrically defocused images, with dynamically adjustable defocus. The adjustment is needed because larger defocus is required before the feedback loop is closed, and at times when the seeing is worse. It may be that the usual membrane mirror is the best choice, though other options should be explored. 3) Detector: Since the proposed sensor is to work on solar granulation, rather than a point source, an array detector for each subaperture is required. A fast CMOS camera such as that developed by the National Solar Observatory would be a satisfactory choice. 4) Processing: Processing requirements have not been defined in detail, though significantly fewer operations per cycle are required than for a correlation tracker

    Hawaii 96822 USA

    No full text
    . Individual X \Gamma ray photons in the keV energy range produce hundreds of photoelectrons in a single pixel of a CCD array detector. The number of photoelectrons produced is a linear function of the photon energy, allowing the measurement of spectral information with an imaging detector system. The Yohkoh Soft X \Gamma ray Telescope uses a CCD in an integrating mode and makes temperature estimates from multiband filter photometry. We show how the SXT can be used in a mew way to perform a limited type of photon spectroscopy. By measuring the variance in intensity through a single filter of an x \Gamma ray source on repeated SXT images, the mean energy per detected photon can be determined. This value is related to the underlying coronal spectrum, and hence can be used to deduce the plasma temperature. We compare the results of the temperatures derived using this new technique on a series of SXT images of a post-flare loop system with the temperatures derived using the standard flux-r..

    The Magnetic Free Energy in Active Regions

    No full text
    The magnetic field permeating the solar atmosphere governs much of the structure, morphology, brightness, and dynamics observed on the Sun. The magnetic field, especially in active regions, is thought to provide the power for energetic events in the solar corona, such as solar flares and Coronal Mass Ejections (CME) and is believed to energize the hot coronal plasma seen in extreme ultraviolet or X-rays. The question remains what specific aspect of the magnetic flux governs the observed variability. To directly understand the role of the magnetic field in energizing the solar corona, it is necessary to measure the free magnetic energy available in active regions. The grant now expiring has demonstrated a new and valuable technique for observing the magnetic free energy in active regions as a function of time
    corecore