320 research outputs found

    IMAGES I, MD101: A coring cruise of the R/V Marion Dufresne in the North Atlantic Ocean and Norwegian Sea

    Get PDF
    IMAGES coordinated a first international cruise in June and July 1995 over the North Atlantic and Norwegian sea on board the French RN Mm'ion Dufresne (MD 10 I, Brest - Stornoway (Lewis Island) - St-Pierre - Azores - Marseille). Its main scientific objective was the collection of giant piston cores on rapidly sedimenting drifts and continental margins of the North Atlantic ocean and Norwegian Sea, along the track of the main thermohaline circulation. The cruise crossed the North-East Atlantic margins, the Feni Drift, the Scottish, North Faeroes and Norwegian margins (to nON), the Iceland South-East margins, the Gardar Drift, the NAMOC Channel, the Newfoundland margin, the Bermuda rise, the mid Atlantic ridge, and the Azores and Iberian margins. Additional objectives covered: - the contribution of Mediterranean waters to the North Atlantic intermediate waters, with 5 cores recovered across the slopes of the Iberian margin; - the evolution of the NAMOC channel, in the deep North-West Atlantic basin, in relation to the growths and decays of the Laurentide ice sheet (8 Kullenberg and gravity cores). This was the maiden cruise of the new Mm'ion Dujresne, just 2 weeks out from her Le Havre shipyard. The ship had a very small number of problems, taking into account the number of things which were not ready just a few days before the departure. Two days were lost for engine problems. 70 scientists, students and technicians from 22 institutions (13 countries) participated to at least one of the three legs. 43 cores (mean length over 30 meters) have been retrieved during the cruise, described and measured for magnetic susceptibility, p-wave velocity, y density and spectral light reflectance. The longest core, MD 95-2036 (52.64 m) was retrieved at 4461 m water depth on the Bermuda Rise. It covers about 150 kyr with a sedimentation rate over 30 cm/kyr. The Calypso corer worked properly, once a few problems encountered at the be"innin" of the cruise had been solved (i.e. sliced or imploded PVC liner). This report presents preliminary results, mostly obtained on board: core descriptions, physical properties and micro-paleontological stratigraphy. Color reflectance (between 40° and 55°N) and magnetic susceptibility (between 50° and 700N) have been used for direct tuning of the time scales by cyclo-stratigraphy in the precession and obliquity bands. Ocean-wide correlations have been established over the last 250 kyr

    Coherent light transport in a cold Strontium cloud

    Get PDF
    We study light coherent transport in the weak localization regime using magneto-optically cooled strontium atoms. The coherent backscattering cone is measured in the four polarization channels using light resonant with a J=0 to J=1 transition of the Strontium atom. We find an enhancement factor close to 2 in the helicity preserving channel, in agreement with theoretical predictions. This observation confirms the effect of internal structure as the key mechanism for the contrast reduction observed with an Rubidium cold cloud (see: Labeyrie et al., PRL 83, 5266 (1999)). Experimental results are in good agreement with Monte-Carlo simulations taking into account geometry effects.Comment: 4 pages, 2 figure

    Light transport in cold atoms and thermal decoherence

    Get PDF
    By using the coherent backscattering interference effect, we investigate experimentally and theoretically how coherent transport of light inside a cold atomic vapour is affected by the residual motion of atomic scatterers. As the temperature of the atomic cloud increases, the interference contrast dramatically decreases emphazising the role of motion-induced decoherence for resonant scatterers even in the sub-Doppler regime of temperature. We derive analytical expressions for the corresponding coherence time.Comment: 4 pages - submitted to Physical Review Letter

    Large Faraday rotation of resonant light in a cold atomic cloud

    Get PDF
    We experimentally studied the Faraday rotation of resonant light in an optically-thick cloud of laser-cooled rubidium atoms. Measurements yield a large Verdet constant in the range of 200 000 degrees/T/mm and a maximal polarization rotation of 150 degrees. A complete analysis of the polarization state of the transmitted light was necessary to account for the role of the probe laser's spectrum

    Speckle Statistics in Adaptively Corrected Images

    Full text link
    (abridged) Imaging observations are generally affected by a fluctuating background of speckles, a particular problem when detecting faint stellar companions at small angular separations. Knowing the distribution of the speckle intensities at a given location in the image plane is important for understanding the noise limits of companion detection. The speckle noise limit in a long-exposure image is characterized by the intensity variance and the speckle lifetime. In this paper we address the former quantity through the distribution function of speckle intensity. Previous theoretical work has predicted a form for this distribution function at a single location in the image plane. We developed a fast readout mode to take short exposures of stellar images corrected by adaptive optics at the ground-based UCO/Lick Observatory, with integration times of 5 ms and a time between successive frames of 14.5 ms (λ=2.2\lambda=2.2 μ\mum). These observations temporally oversample and spatially Nyquist sample the observed speckle patterns. We show, for various locations in the image plane, the observed distribution of speckle intensities is consistent with the predicted form. Additionally, we demonstrate a method by which IcI_c and IsI_s can be mapped over the image plane. As the quantity IcI_c is proportional to the PSF of the telescope free of random atmospheric aberrations, this method can be used for PSF calibration and reconstruction.Comment: 7 pages, 4 figures, ApJ accepte

    An 11.6 Micron Keck Search For Exozodiacal Dust

    Get PDF
    We have begun an observational program to search nearby stars for dust disks that are analogous to the disk of zodiacal dust that fills the interior of our solar system. We imaged six nearby main-sequence stars with the Keck telescope at 11.6 microns, correcting for atmosphere-induced wavefront aberrations and deconvolving the point spread function via classical speckle analysis. We compare our data to a simple model of the zodiacal dust in our own system based on COBE/DIRBE observations and place upper limits on the density of exozodiacal dust in these systems.Comment: 10 pages, figure1, figure2, figure3, and figures 4a-

    Hanle effect in coherent backscattering

    Get PDF
    We study the shape of the coherent backscattering (CBS) cone obtained when resonant light illuminates a thick cloud of laser-cooled rubidium atoms in presence of a homogenous magnetic field. We observe new magnetic field-dependent anisotropies in the CBS signal. We show that the observed behavior is due to the modification of the atomic radiation pattern by the magnetic field (Hanle effect in the excited state).Comment: 4 pages, 3 figure

    Michelson Interferometry with the Keck I Telescope

    Get PDF
    We report the first use of Michelson interferometry on the Keck I telescope for diffraction-limited imaging in the near infrared JHK and L bands. By using an aperture mask located close to the f/25 secondary, the 10 m Keck primary mirror was transformed into a separate-element, multiple aperture interferometer. This has allowed diffraction-limited imaging of a large number of bright astrophysical targets, including the geometrically complex dust envelopes around a number of evolved stars. The successful restoration of these images, with dynamic ranges in excess of 200:1, highlights the significant capabilities of sparse aperture imaging as compared with more conventional filled-pupil speckle imaging for the class of bright targets considered here. In particular the enhancement of the signal-to-noise ratio of the Fourier data, precipitated by the reduction in atmospheric noise, allows high fidelity imaging of complex sources with small numbers of short-exposure images relative to speckle. Multi-epoch measurements confirm the reliability of this imaging technique and our whole dataset provides a powerful demonstration of the capabilities of aperture masking methods when utilized with the current generation of large-aperture telescopes. The relationship between these new results and recent advances in interferometry and adaptive optics is briefly discussed.Comment: Accepted into Publications of the Astronomical Society of the Pacific. To appear in vol. 112. Paper contains 10 pages, 8 figure

    Weak localization of light by cold atoms: the impact of quantum internal structure

    Get PDF
    Since the work of Anderson on localization, interference effects for the propagation of a wave in the presence of disorder have been extensively studied, as exemplified in coherent backscattering (CBS) of light. In the multiple scattering of light by a disordered sample of thermal atoms, interference effects are usually washed out by the fast atomic motion. This is no longer true for cold atoms where CBS has recently been observed. However, the internal structure of the atoms strongly influences the interference properties. In this paper, we consider light scattering by an atomic dipole transition with arbitrary degeneracy and study its impact on coherent backscattering. We show that the interference contrast is strongly reduced. Assuming a uniform statistical distribution over internal degrees of freedom, we compute analytically the single and double scattering contributions to the intensity in the weak localization regime. The so-called ladder and crossed diagrams are generalized to the case of atoms and permit to calculate enhancement factors and backscattering intensity profiles for polarized light and any closed atomic dipole transition.Comment: 22 pages Revtex, 9 figures, to appear in PR

    Modern optical astronomy: technology and impact of interferometry

    Get PDF
    The present `state of the art' and the path to future progress in high spatial resolution imaging interferometry is reviewed. The review begins with a treatment of the fundamentals of stellar optical interferometry, the origin, properties, optical effects of turbulence in the Earth's atmosphere, the passive methods that are applied on a single telescope to overcome atmospheric image degradation such as speckle interferometry, and various other techniques. These topics include differential speckle interferometry, speckle spectroscopy and polarimetry, phase diversity, wavefront shearing interferometry, phase-closure methods, dark speckle imaging, as well as the limitations imposed by the detectors on the performance of speckle imaging. A brief account is given of the technological innovation of adaptive-optics (AO) to compensate such atmospheric effects on the image in real time. A major advancement involves the transition from single-aperture to the dilute-aperture interferometry using multiple telescopes. Therefore, the review deals with recent developments involving ground-based, and space-based optical arrays. Emphasis is placed on the problems specific to delay-lines, beam recombination, polarization, dispersion, fringe-tracking, bootstrapping, coherencing and cophasing, and recovery of the visibility functions. The role of AO in enhancing visibilities is also discussed. The applications of interferometry, such as imaging, astrometry, and nulling are described. The mathematical intricacies of the various `post-detection' image-processing techniques are examined critically. The review concludes with a discussion of the astrophysical importance and the perspectives of interferometry.Comment: 65 pages LaTeX file including 23 figures. Reviews of Modern Physics, 2002, to appear in April issu
    • …
    corecore