31 research outputs found

    Advanced Biometric Technologies: Emerging Scenarios and Research Trends

    Get PDF
    Biometric systems are the ensemble of devices, procedures, and algorithms for the automatic recognition of individuals by means of their physiological or behavioral characteristics. Although biometric systems are traditionally used in high-security applications, recent advancements are enabling the application of these systems in less-constrained conditions with non-ideal samples and with real-time performance. Consequently, biometric technologies are being increasingly used in a wide variety of emerging application scenarios, including public infrastructures, e-government, humanitarian services, and user-centric applications. This chapter introduces recent biometric technologies, reviews emerging scenarios for biometric recognition, and discusses research trends

    Iris Deidentification with High Visual Realism for Privacy Protection on Websites and Social Networks

    Get PDF
    The very high recognition accuracy of iris-based biometric systems and the increasing distribution of high-resolution personal images on websites and social media are creating privacy risks that users and the biometric community have not yet addressed properly. Biometric information contained in the iris region can be used to automatically recognize individuals even after several years, potentially enabling pervasive identification, recognition, and tracking of individuals without explicit consent. To address this issue, this paper presents two main contributions. First, we demonstrate, through practical examples, that the risk associated with iris-based identification by means of images collected from public websites and social media is real. Second, we propose an innovative method based on generative adversarial networks (GANs) that can automatically generate novel images with high visual realism, in which all the biometric information associated with an individual in the iris region has been removed and replaced. We tested the proposed method on an image dataset composed of high-resolution portrait images collected from the web. The results show that the generated deidentified images significantly reduce the privacy risks and, in most cases, are indistinguishable from real samples

    Privacy-Preserving Fingercode Authentication

    No full text
    We present a privacy preserving protocol for fingerprint-based authentication. We consider a scenario where a client equipped with a fingerprint reader is interested into learning if the acquired fingerprint belongs to the database of authorized entities managed by a server. For security, it is required that the client does not learn anything on the database and the server should not get any information about the requested biometry and the outcome of the matching process. The proposed protocol follows a multi-party computation approach and makes extensive use of homomorphic encryption as underlying cryptographic primitive. To keep the protocol complexity as low as possible, a particular representation of fingerprint images, named Fingercode, is adopted. Although the previous works on privacy-preserving biometric identification focus on selecting the best matching identity in the database, our main solution is a generic identification protocol and it allows to select and report all the enrolled identities whose distance to the user's fingercode is under a given threshold. Variants for simple authentication purposes are provided. Our protocols gain a notable bandwidth saving (about 25-39%) if compared with the best previous work (ICISC'09) and its computational complexity is still low and suitable for practical applications. Moreover, even if such protocols are presented in the context of a fingerprint-based system, they can be generalized to any biometric system that shares the same matching methodology, namely distance computation and thresholding

    A Privacy-compliant Fingerprint Recognition System Based on Homomorphic Encryption and Fingercode Templates

    Get PDF
    The privacy protection of the biometric data is an important research topic, especially in the case of distributed biometric systems. In this scenario, it is very important to guarantee that biometric data cannot be steeled by anyone, and that the biometric clients are unable to gather any information different from the single user verification/identification. In a biométrie system with high level of privacy compliance, also the server that processes the biométrie matching should not learn anything on the database and it should be impossible for the server to exploit the resulting matching values in order to extract any knowledge about the user presence or behavior. Within this conceptual framework, in this paper we propose a novel complete demonstrator based on a distributed biométrie system that is capable to protect the privacy of the individuals by exploiting cryptosystems. The implemented system computes the matching task in the encrypted domain by exploiting homomorphic encryption and using Fingercode templates. The paper describes the design methodology of the demonstrator and the obtained results. The demonstrator has been fully implemented and tested in real applicative conditions. Experimental results show that this method is feasible in the cases where the privacy of the data is more important than the accuracy of the system and the obtained computational time is satisfactory

    A privacy-compliant fingerprint recognition system based on homomorphic encryption and Fingercode templates

    No full text
    The privacy protection of the biometric data is an important research topic, especially in the case of distributed biometric systems. In this scenario, it is very important to guarantee that biometric data cannot be steeled by anyone, and that the biometric clients are unable to gather any information different from the single user verification/identification. In a biométrie system with high level of privacy compliance, also the server that processes the biométrie matching should not learn anything on the database and it should be impossible for the server to exploit the resulting matching values in order to extract any knowledge about the user presence or behavior. Within this conceptual framework, in this paper we propose a novel complete demonstrator based on a distributed biométrie system that is capable to protect the privacy of the individuals by exploiting cryptosystems. The implemented system computes the matching task in the encrypted domain by exploiting homomorphic encryption and using Fingercode templates. The paper describes the design methodology of the demonstrator and the obtained results. The demonstrator has been fully implemented and tested in real applicative conditions. Experimental results show that this method is feasible in the cases where the privacy of the data is more important than the accuracy of the system and the obtained computational time is satisfactory

    A privacy-compliant fingerprint recognition system based on homomorphic encryption and Fingercode templates

    Get PDF
    The privacy protection of the biometric data is an important research topic, especially in the case of distributed biometric systems. In this scenario, it is very important to guarantee that biometric data cannot be steeled by anyone, and that the biometric clients are unable to gather any information different from the single user verification/identification. In a biométrie system with high level of privacy compliance, also the server that processes the biométrie matching should not learn anything on the database and it should be impossible for the server to exploit the resulting matching values in order to extract any knowledge about the user presence or behavior. Within this conceptual framework, in this paper we propose a novel complete demonstrator based on a distributed biométrie system that is capable to protect the privacy of the individuals by exploiting cryptosystems. The implemented system computes the matching task in the encrypted domain by exploiting homomorphic encryption and using Fingercode templates. The paper describes the design methodology of the demonstrator and the obtained results. The demonstrator has been fully implemented and tested in real applicative conditions. Experimental results show that this method is feasible in the cases where the privacy of the data is more important than the accuracy of the system and the obtained computational time is satisfactory
    corecore