2 research outputs found

    Inter-rater reliability of the Dysexecutive Questionnaire (DEX): comparative data from non-clinician respondents – all raters are not equal

    Get PDF
    Primary objective: The Dysexecutive Questionnaire (DEX) is used to obtain information about executive and emotional problems after neuropathology. The DEX is self-completed by the patient (DEX-S) and an independent rater such as a family member (DEX-I). This study examined the level of inter-rater agreement between either two or three non-clinician raters on the DEX-I in order to establish the reliability of DEX-I ratings. Methods and procedures: Family members and/or carers of 60 people with mixed neuropathology completed the DEX-I. For each patient, DEX-I ratings were obtained from either two or three raters who knew the person well prior to brain injury. Main outcomes and results: We obtained two independent-ratings for 60 patients and three independent-ratings for 36 patients. Intra-class correlations revealed that there was only a modest level of agreement for items, subscale and total DEX scores between raters for their particular family member. Several individual DEX items had low reliability and ratings for the emotion sub-scale had the lowest level of agreement. Conclusions: Independent DEX ratings completed by two or more non-clinician raters show only moderate correlation. Suggestions are made for improving the reliability of DEX-I ratings.</p

    Predicting intracranial hemorrhage after traumatic brain injury in low and middle-income countries: A prognostic model based on a large, multi-center, international cohort

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Traumatic brain injury (TBI) affects approximately 10 million people annually, of which intracranial hemorrhage is a devastating sequelae, occurring in one-third to half of cases. Patients in low and middle-income countries (LMIC) are twice as likely to die following TBI as compared to those in high-income countries. Diagnostic capabilities and treatment options for intracranial hemorrhage are limited in LMIC as there are fewer computed tomography (CT) scanners and neurosurgeons per patient as in high-income countries.</p> <p>Methods</p> <p>The Medical Research Council CRASH-1 trial was utilized to build this model. The study cohort included all patients from LMIC who received a CT scan of the brain (n = 5669). Prognostic variables investigated included age, sex, time from injury to randomization, pupil reactivity, cause of injury, seizure and the presence of major extracranial injury.</p> <p>Results</p> <p>There were five predictors that were included in the final model; age, Glasgow Coma Scale, pupil reactivity, the presence of a major extracranial injury and time from injury to presentation. The model demonstrated good discrimination and excellent calibration (c-statistic 0.71). A simplified risk score was created for clinical settings to estimate the percentage risk of intracranial hemorrhage among TBI patients.</p> <p>Conclusion</p> <p>Simple prognostic models can be used in LMIC to estimate the risk of intracranial hemorrhage among TBI patients. Combined with clinical judgment this may facilitate risk stratification, rapid transfer to higher levels of care and treatment in resource-poor settings.</p
    corecore