8 research outputs found

    Co-Expression of VEGF and IL-6 Family Cytokines is Associated with Decreased Survival in HER2 Negative Breast Cancer Patients: Subtype-Specific IL-6 Family Cytokine-Mediated VEGF Secretion

    Get PDF
    Breast cancer cell-response to inflammatory cytokines such as interleukin-6 (IL-6) and oncostatin M (OSM) may affect the course of clinical disease in a cancer subtype-dependent manner. Furthermore, vascular endothelial growth factor A (VEGF) secretion induced by IL-6 and OSM may also be subtype-dependent. Utilizing datasets from Oncomine, we show that poor survival of invasive ductal carcinoma (IDC) breast cancer patients is correlated with both high VEGF expression and high cytokine or cytokine receptor expression in tumors. Importantly, epidermal growth factor receptor-negative (HER2-), but not HER2-positive (HER2+), patient survival is significantly lower with high tumor co-expression of VEGF and OSM, OSMRβ, IL-6, or IL-6Rα compared to low co-expression. Furthermore, assessment of HER2- breast cancer cells in vitro identified unique signaling differences regulating cytokine-induced VEGF secretion. The levels of VEGF secretion were analyzed by ELISA with siRNAs for hypoxia inducible factor 1 α (HIF1α) and signal transducer and activator of transcription 3 (STAT3). Specifically, we found that estrogen receptor-negative (ER-) MDA-MB-231 cells respond only to OSM through STAT3 signaling, while ER+ T47D cells respond to both OSM and IL-6, though to IL-6 to a lesser extent. Additionally, in the ER+ T47D cells, OSM signals through both STAT3 and HIF1α. These results highlight that the survival of breast cancer patients with high co-expression of VEGF and IL-6 family cytokines is dependent on breast cancer subtype. Thus, the heterogeneity of human breast cancer in relation to IL-6 family cytokines and VEGF may have important implications in clinical treatment options, disease progression, and ultimately patient prognosis

    LEM2 recruits CHMP7 for ESCRT-mediated nuclear envelope closure in fission yeast and human cells

    Get PDF
    Endosomal sorting complexes required for transport III (ESCRT-III) proteins have been implicated in sealing the nuclear envelope in mammals, spindle pole body dynamics in fission yeast, and surveillance of defective nuclear pore complexes in budding yeast. Here, we report that Lem2p (LEM2), a member of the LEM (Lap2-Emerin-Man1) family of inner nuclear membrane proteins, and the ESCRT-II/ESCRT-III hybrid protein Cmp7p (CHMP7), work together to recruit additional ESCRT-III proteins to holes in the nuclear membrane. In Schizosaccharomyces pombe, deletion of the ATPase vps4 leads to severe defects in nuclear morphology and integrity. These phenotypes are suppressed by loss-of-function mutations that arise spontaneously in lem2 or cmp7, implying that these proteins may function upstream in the same pathway. Building on these genetic interactions, we explored the role of LEM2 during nuclear envelope reformation in human cells. We found that CHMP7 and LEM2 enrich at the same region of the chromatin disk periphery during this window of cell division and that CHMP7 can bind directly to the C-terminal domain of LEM2 in vitro. We further found that, during nuclear envelope formation, recruitment of the ESCRT factors CHMP7, CHMP2A, and IST1/CHMP8 all depend on LEM2 in human cells. We conclude that Lem2p/LEM2 is a conserved nuclear site-specific adaptor that recruits Cmp7p/CHMP7 and downstream ESCRT factors to the nuclear envelope

    Doctor of Philosophy

    No full text
    dissertationMetazoan cells undergo an open mitosis during which interphase nuclear architecture is dismantled. Once chromosomes are separated by the mitotic spindle during anaphase, membrane and associated nuclear envelope proteins begin to target to the chromatin surface. As the nascent nuclear envelope engulfs chromatin disks, certain transmembrane proteins form discrete subdomains associated with different processes: nuclear pore complexes rapidly assemble at the peripheral edge of chromatin disks while cellular machinery facilitates microtubule clearance and membrane sealing at central regions. These initial targeting events are expeditious but transient, occurring on the order of minutes, and are then lost as the nuclear envelope seals and establishes a permeability barrier. As cells transition to telophase, sealing machinery is cleared from the chromatin surface, subdomains redistribute, and new nuclear pore complexes must be inserted into the double membrane of the nuclear envelope. The endosomal sorting complex required for transport (ESCRT) pathway and associated AAA-ATPases clear microtubules from the chromatin surface and seal the nascent nuclear envelope. In this dissertation, I report that the inner nuclear membrane protein LEM2 interacts directly with the ESCRT factor CHMP7 to recruit additional ESCRT factors at the nascent nuclear envelope during late anaphase. I show that depleting LEM2 abrogates CHMP7 - and downstream ESCRT-III - localization in anaphase by both fixed and live cell imaging. iv Additionally, these studies show that disrupting the function of the nuclear pore protein Nup153 interferes with ongoing addition of specific constituents to the nascent nuclear envelope after anaphase. This phenotype develops early in telophase, after the nuclear envelope initially encloses chromatin, revealing late events of nuclear formation in mammalian cells. Further, protein targeting defects are restricted to a subset of inner nuclear membrane proteins, pointing to differential requirements for ongoing targeting. Disrupting Nup153 function in nuclear formation reveals that two phases of nuclear membrane addition can be uncoupled in mammalian cells and that there is unanticipated complexity in targeting residents of the nuclear envelope after mitosis

    Bleach Gel: A Simple Agarose Gel for Analyzing RNA Quality

    No full text
    RNA-based applications requiring high-quality, non-degraded RNA are a foundational element of many research studies. As such, it is paramount that the integrity of experimental RNA is validated prior to cDNA synthesis or other downstream applications. In the absence of expensive equipment such as microfluidic electrophoretic devices, and as an alternative to the costly and time-consuming standard formaldehyde gel, RNA quality can be quickly analyzed by adding small amounts of commercial bleach to TAE buffer-based agarose gels prior to electrophoresis. In the presence of low concentrations of bleach, the secondary structure of RNA is denatured and potential contaminating RNases are destroyed. Because of this, the ‘bleach gel’ is a functional approach that addresses the need for an inexpensive and safe way to evaluate RNA integrity and will improve the ability of researchers to rapidly analyze RNA quality

    HIGH Expression of OSM and IL-6 Are Associated with Decreased Breast Cancer Survival: Synergistic Induction of IL-6 Secretion by OSM and IL-1β

    Get PDF
    Chronic inflammation has been recognized as a risk factor for the development and maintenance of malignant disease. Cytokines such as interleukin-6 (IL-6), oncostatin M (OSM), and interleukin-1 beta (IL-1β) promote the development of both acute and chronic inflammation while promoting in vitro metrics of breast cancer metastasis. However, anti-IL-6 and anti-IL-1β therapeutics have not yielded significant results against solid tumors in clinical trials. Here we show that these three cytokines are interrelated in expression. Using the Curtis TCGA™ dataset, we have determined that there is a correlation between expression levels of OSM, IL-6, and IL-1β and reduced breast cancer patient survival (r = 0.6, p = 2.2 x 10−23). Importantly, we confirm that OSM induces at least a 4-fold increase in IL-6 production from estrogen receptor-negative (ER−) breast cancer cells in a manner that is dependent on STAT3 signaling. Furthermore, OSM induces STAT3 phosphorylation and IL-1β promotes p65 phosphorylation to synergistically induce IL-6 secretion in ER− MDA-MB-231 and to a lesser extent in ER+ MCF7 human breast cancer cells. Induction may be reduced in the ER+ MCF7 cells due to a previously known suppressive interaction between ER and STAT3. Interestingly, we show in MCF7 cells that ER’s interaction with STAT3 is reduced by 50% through both OSM and IL-1β treatment, suggesting a role for ER in mitigating STAT3-mediated inflammatory cascades. Here, we provide a rationale for a breast cancer treatment regime that simultaneously suppresses multiple targets, as these cytokines possess many overlapping functions that increase metastasis and worsen patient survival
    corecore