5 research outputs found

    Estimating methane emissions in California's urban and rural regions using multitower observations

    Get PDF
    We present an analysis of methane (CH_4) emissions using atmospheric observations from 13 sites in California during June 2013 to May 2014. A hierarchical Bayesian inversion method is used to estimate CH_4 emissions for spatial regions (0.3° pixels for major regions) by comparing measured CH_4 mixing ratios with transport model (Weather Research and Forecasting and Stochastic Time-Inverted Lagrangian Transport) predictions based on seasonally varying California-specific CH_4 prior emission models. The transport model is assessed using a combination of meteorological and carbon monoxide (CO) measurements coupled with the gridded California Air Resources Board (CARB) CO emission inventory. The hierarchical Bayesian inversion suggests that state annual anthropogenic CH_4 emissions are 2.42 ± 0.49 Tg CH_4/yr (at 95% confidence), higher (1.2–1.8 times) than the current CARB inventory (1.64 Tg CH_4/yr in 2013). It should be noted that undiagnosed sources of errors or uncaptured errors in the model-measurement mismatch covariance may increase these uncertainty bounds beyond that indicated here. The CH_4 emissions from the Central Valley and urban regions (San Francisco Bay and South Coast Air Basins) account for ~58% and 26% of the total posterior emissions, respectively. This study suggests that the livestock sector is likely the major contributor to the state total CH_4 emissions, in agreement with CARB's inventory. Attribution to source sectors for subregions of California using additional trace gas species would further improve the quantification of California's CH_4 emissions and mitigation efforts toward the California Global Warming Solutions Act of 2006 (Assembly Bill 32)

    Estimating methane emissions in California’s urban and rural regions using multi-tower observations:

    Get PDF
    We present an analysis of methane (CH4) emissions using atmospheric observations from 36 thirteen sites in California during June 2013 – May 2014. A hierarchical Bayesian inversion 37 method is used to estimate CH4 emissions for spatial regions (0.3° pixels for major regions) by 38 comparing measured CH4 mixing ratios with transport model (WRF-STILT) predictions based 39 on seasonally varying California-specific CH4 prior emission models. The transport model is 40 assessed using a combination of meteorological and carbon monoxide (CO) measurements 41 coupled with the gridded California Air Resources Board (CARB) carbon monoxide (CO) 42 emission inventory. Hierarchical Bayesian inversion suggests that state annual anthropogenic 43 CH4 emissions are 2.42 ± 0.49 Tg CH4/yr (at 95% confidence, including transport bias 44 uncertainty), higher (1.2 - 1.8 times) than the CARB current inventory (1.64 Tg CH4/yr in 2013). 45 We note that the estimated CH4 emissions drop to 1.0 - 1.6 times the CARB inventory if we 46 correct for the 10% median CH4 emissions assuming the bias in CO analysis is applicable to 47 CH4. The CH4 emissions from the Central Valley and urban regions (San Francisco Bay and 48 South Coast Air Basins) account for ~58% and 26% of the total posterior emissions, 49 respectively. This study suggests that the livestock sector is likely the major contributor to the 50 state total CH4 emissions, in agreement with CARB’s inventory. Attribution to source sectors for 51 sub-regions of California using additional trace gas species would further improve the 52 quantification of California’s CH4 emissions and mitigation efforts towards the California Global 53 Warming Solutions Act of 2006 (AB-32)

    Guidelines for the Treatment of Hypothyroidism: Prepared by the American Thyroid Association Task Force on Thyroid Hormone Replacement

    No full text
    Background: A number of recent advances in our understanding of thyroid physiology may shed light on why some patients feel unwell while taking levothyroxine monotherapy. The purpose of this task force was to review the goals of levothyroxine therapy, the optimal prescription of conventional levothyroxine therapy, the sources of dissatisfaction with levothyroxine therapy, the evidence on treatment alternatives, and the relevant knowledge gaps. We wished to determine whether there are sufficient new data generated by well-designed studies to provide reason to pursue such therapies and change the current standard of care. This document is intended to inform clinical decision-making on thyroid hormone replacement therapy; it is not a replacement for individualized clinical judgment. Methods: Task force members identified 24 questions relevant to the treatment of hypothyroidism. The clinical literature relating to each question was then reviewed. Clinical reviews were supplemented, when relevant, with related mechanistic and bench research literature reviews, performed by our team of translational scientists. Ethics reviews were provided, when relevant, by a bioethicist. The responses to questions were formatted, when possible, in the form of a formal clinical recommendation statement. When responses were not suitable for a formal clinical recommendation, a summary response statement without a formal clinical recommendation was developed. For clinical recommendations, the supporting evidence was appraised, and the strength of each clinical recommendation was assessed, using the American College of Physicians system. The final document was organized so that each topic is introduced with a question, followed by a formal clinical recommendation. Stakeholder input was received at a national meeting, with some subsequent refinement of the clinical questions addressed in the document. Consensus was achieved for all recommendations by the task force. Results: We reviewed the following therapeutic categories: (i) levothyroxine therapy, (ii) non–levothyroxine-based thyroid hormone therapies, and (iii) use of thyroid hormone analogs. The second category included thyroid extracts, synthetic combination therapy, triiodothyronine therapy, and compounded thyroid hormones. Conclusions: We concluded that levothyroxine should remain the standard of care for treating hypothyroidism. We found no consistently strong evidence for the superiority of alternative preparations (e.g., levothyroxine–liothyronine combination therapy, or thyroid extract therapy, or others) over monotherapy with levothyroxine, in improving health outcomes. Some examples of future research needs include the development of superior biomarkers of euthyroidism to supplement thyrotropin measurements, mechanistic research on serum triiodothyronine levels (including effects of age and disease status, relationship with tissue concentrations, as well as potential therapeutic targeting), and long-term outcome clinical trials testing combination therapy or thyroid extracts (including subgroup effects). Additional research is also needed to develop thyroid hormone analogs with a favorable benefit to risk profile

    Observational Insights into Aerosol Formation from Isoprene

    No full text
    corecore