9 research outputs found

    Proteolysis-Dependent Remodeling of the Tubulin Homolog FtsZ at the Division Septum in \u3ci\u3eEscherichia coli\u3c/i\u3e

    Get PDF
    During bacterial cell division a dynamic protein structure called the Z-ring assembles at the septum. The major protein in the Z-ring in Escherichia coli is FtsZ, a tubulin homolog that polymerizes with GTP. FtsZ is degraded by the two-component ATP-dependent protease ClpXP. Two regions of FtsZ, located outside of the polymerization domain in the unstructured linker and at the C-terminus, are important for specific recognition and degradation by ClpXP. We engineered a synthetic substrate containing green fluorescent protein (Gfp) fused to an extended FtsZ C-terminal tail (residues 317–383), including the unstructured linker and the C-terminal conserved region, but not the polymerization domain, and showed that it is sufficient to target a non-native substrate for degradation in vitro. To determine if FtsZ degradation regulates Z-ring assembly during division, we expressed a full length Gfp-FtsZ fusion protein in wild type and clp deficient strains and monitored fluorescent Z-rings. In cells deleted for clpX or clpP, or cells expressing protease-defective mutant protein ClpP(S97A), Z-rings appear normal; however, after photobleaching a region of the Z-ring, fluorescence recovers ~70% more slowly in cells without functional ClpXP than in wild type cells. Gfp-FtsZ(R379E), which is defective for degradation by ClpXP, also assembles into Z-rings that recover fluorescence ~2-fold more slowly than Z-rings containing Gfp-FtsZ. In vitro, ClpXP cooperatively degrades and disassembles FtsZ polymers. These results demonstrate that ClpXP is a regulator of Z-ring dynamics and that the regulation is proteolysis-dependent. Our results further show that FtsZ-interacting proteins in E. coli fine-tune Z-ring dynamics

    Bacterial Etiology and Risk Factors Associated with Cellulitis and Purulent Skin Abscesses in Military Trainees.

    No full text
    Military trainees are at high risk for skin and soft-tissue infections (SSTIs). Although Staphylococcus aureus is associated with purulent SSTI, it is unclear to what degree this pathogen causes nonpurulent cellulitis. To inform effective prevention strategies and to provide novel insights into SSTI pathogenesis, we aimed to determine the etiology of SSTI in this population. We conducted a prospective observational study in US Army Infantry trainees with SSTI (cutaneous abscesses and cellulitis) from July 2012 through December 2014. We used standard microbiology, serology, and high-throughput sequencing to determine the etiology of SSTI. Furthermore, we compared purported risk factors as well as anatomic site colonization for S. aureus. Among 201 SSTI cases evaluated for SSTI risk factors, cellulitis was associated with lower extremity blisters (P = 0.01) and abscess was associated with methicillin-resistant S. aureus (MRSA) colonization (P<0.001). Among the 22 tested cellulitis cases that were part of the microbiome analysis, only 1 leading edge aspirate was culturable (Coagulase-negative Staphylococcus). Microbiome evaluation of aspirate specimens demonstrated that Rhodanobacter terrae was the most abundant species (66.8% average abundance), while abscesses were dominated by S. aureus (92.9% average abundance). Although abscesses and cellulitis share the spectrum of clinical SSTI, the bacterial etiologies as determined by current technology appear distinct. Furthermore, the presence of atypical bacteria within cellulitis aspirates may indicate novel mechanisms of cellulitis pathogenesis.NCT01105767

    Sublethal Concentrations of Antibiotics, Effects on Bacteria and the Immune System

    No full text
    corecore