39 research outputs found

    A Dihalide–Decahydrate Cluster of [X<sub>2</sub>(H<sub>2</sub>O)<sub>10</sub>]<sup>2–</sup> in a Supramolecular Architecture of {[Na<sub>2</sub>(H<sub>2</sub>O)<sub>6</sub>(H<sub>2</sub>O@TMEQ[6])]·2(C<sub>6</sub>H<sub>5</sub>NO<sub>3</sub>)}X<sub>2</sub>(H<sub>2</sub>O)<sub>10</sub> (TMEQ[6] = α,α′,δ,δ′-Tetramethylcucurbit[6]uril; X = Cl, Br)

    No full text
    A discrete dihalide–decahydrate cluster of [X<sub>2</sub>­(H<sub>2</sub>O)<sub>10</sub>]<sup>2–</sup> has been observed in a solid-state structure of {[Na<sub>2</sub>­(H<sub>2</sub>O)<sub>6</sub>­(H<sub>2</sub>O­@­TMEQ­[6])]·2­(C<sub>6</sub>H<sub>5</sub>­NO<sub>3</sub>)}­X<sub>2</sub>­(H<sub>2</sub>O)<sub>10</sub>} (TMEQ[6] = α,α′,δ,δ′-tetra­methyl­cucurbit[6]­uril; X = Cl (<b>1</b>), Br (<b>2</b>)). Its structure can be viewed as a connection of two [X­(H<sub>2</sub>O)<sub>3</sub>]<sup>−</sup> clusters with a uudd water tetramer through hydrogen-bonding interactions

    A Dihalide–Decahydrate Cluster of [X<sub>2</sub>(H<sub>2</sub>O)<sub>10</sub>]<sup>2–</sup> in a Supramolecular Architecture of {[Na<sub>2</sub>(H<sub>2</sub>O)<sub>6</sub>(H<sub>2</sub>O@TMEQ[6])]·2(C<sub>6</sub>H<sub>5</sub>NO<sub>3</sub>)}X<sub>2</sub>(H<sub>2</sub>O)<sub>10</sub> (TMEQ[6] = α,α′,δ,δ′-Tetramethylcucurbit[6]uril; X = Cl, Br)

    No full text
    A discrete dihalide–decahydrate cluster of [X<sub>2</sub>­(H<sub>2</sub>O)<sub>10</sub>]<sup>2–</sup> has been observed in a solid-state structure of {[Na<sub>2</sub>­(H<sub>2</sub>O)<sub>6</sub>­(H<sub>2</sub>O­@­TMEQ­[6])]·2­(C<sub>6</sub>H<sub>5</sub>­NO<sub>3</sub>)}­X<sub>2</sub>­(H<sub>2</sub>O)<sub>10</sub>} (TMEQ[6] = α,α′,δ,δ′-tetra­methyl­cucurbit[6]­uril; X = Cl (<b>1</b>), Br (<b>2</b>)). Its structure can be viewed as a connection of two [X­(H<sub>2</sub>O)<sub>3</sub>]<sup>−</sup> clusters with a uudd water tetramer through hydrogen-bonding interactions

    A Dihalide–Decahydrate Cluster of [X<sub>2</sub>(H<sub>2</sub>O)<sub>10</sub>]<sup>2–</sup> in a Supramolecular Architecture of {[Na<sub>2</sub>(H<sub>2</sub>O)<sub>6</sub>(H<sub>2</sub>O@TMEQ[6])]·2(C<sub>6</sub>H<sub>5</sub>NO<sub>3</sub>)}X<sub>2</sub>(H<sub>2</sub>O)<sub>10</sub> (TMEQ[6] = α,α′,δ,δ′-Tetramethylcucurbit[6]uril; X = Cl, Br)

    No full text
    A discrete dihalide–decahydrate cluster of [X<sub>2</sub>­(H<sub>2</sub>O)<sub>10</sub>]<sup>2–</sup> has been observed in a solid-state structure of {[Na<sub>2</sub>­(H<sub>2</sub>O)<sub>6</sub>­(H<sub>2</sub>O­@­TMEQ­[6])]·2­(C<sub>6</sub>H<sub>5</sub>­NO<sub>3</sub>)}­X<sub>2</sub>­(H<sub>2</sub>O)<sub>10</sub>} (TMEQ[6] = α,α′,δ,δ′-tetra­methyl­cucurbit[6]­uril; X = Cl (<b>1</b>), Br (<b>2</b>)). Its structure can be viewed as a connection of two [X­(H<sub>2</sub>O)<sub>3</sub>]<sup>−</sup> clusters with a uudd water tetramer through hydrogen-bonding interactions

    A Dihalide–Decahydrate Cluster of [X<sub>2</sub>(H<sub>2</sub>O)<sub>10</sub>]<sup>2–</sup> in a Supramolecular Architecture of {[Na<sub>2</sub>(H<sub>2</sub>O)<sub>6</sub>(H<sub>2</sub>O@TMEQ[6])]·2(C<sub>6</sub>H<sub>5</sub>NO<sub>3</sub>)}X<sub>2</sub>(H<sub>2</sub>O)<sub>10</sub> (TMEQ[6] = α,α′,δ,δ′-Tetramethylcucurbit[6]uril; X = Cl, Br)

    No full text
    A discrete dihalide–decahydrate cluster of [X<sub>2</sub>­(H<sub>2</sub>O)<sub>10</sub>]<sup>2–</sup> has been observed in a solid-state structure of {[Na<sub>2</sub>­(H<sub>2</sub>O)<sub>6</sub>­(H<sub>2</sub>O­@­TMEQ­[6])]·2­(C<sub>6</sub>H<sub>5</sub>­NO<sub>3</sub>)}­X<sub>2</sub>­(H<sub>2</sub>O)<sub>10</sub>} (TMEQ[6] = α,α′,δ,δ′-tetra­methyl­cucurbit[6]­uril; X = Cl (<b>1</b>), Br (<b>2</b>)). Its structure can be viewed as a connection of two [X­(H<sub>2</sub>O)<sub>3</sub>]<sup>−</sup> clusters with a uudd water tetramer through hydrogen-bonding interactions

    A Dihalide–Decahydrate Cluster of [X<sub>2</sub>(H<sub>2</sub>O)<sub>10</sub>]<sup>2–</sup> in a Supramolecular Architecture of {[Na<sub>2</sub>(H<sub>2</sub>O)<sub>6</sub>(H<sub>2</sub>O@TMEQ[6])]·2(C<sub>6</sub>H<sub>5</sub>NO<sub>3</sub>)}X<sub>2</sub>(H<sub>2</sub>O)<sub>10</sub> (TMEQ[6] = α,α′,δ,δ′-Tetramethylcucurbit[6]uril; X = Cl, Br)

    No full text
    A discrete dihalide–decahydrate cluster of [X<sub>2</sub>­(H<sub>2</sub>O)<sub>10</sub>]<sup>2–</sup> has been observed in a solid-state structure of {[Na<sub>2</sub>­(H<sub>2</sub>O)<sub>6</sub>­(H<sub>2</sub>O­@­TMEQ­[6])]·2­(C<sub>6</sub>H<sub>5</sub>­NO<sub>3</sub>)}­X<sub>2</sub>­(H<sub>2</sub>O)<sub>10</sub>} (TMEQ[6] = α,α′,δ,δ′-tetra­methyl­cucurbit[6]­uril; X = Cl (<b>1</b>), Br (<b>2</b>)). Its structure can be viewed as a connection of two [X­(H<sub>2</sub>O)<sub>3</sub>]<sup>−</sup> clusters with a uudd water tetramer through hydrogen-bonding interactions

    A Dihalide–Decahydrate Cluster of [X<sub>2</sub>(H<sub>2</sub>O)<sub>10</sub>]<sup>2–</sup> in a Supramolecular Architecture of {[Na<sub>2</sub>(H<sub>2</sub>O)<sub>6</sub>(H<sub>2</sub>O@TMEQ[6])]·2(C<sub>6</sub>H<sub>5</sub>NO<sub>3</sub>)}X<sub>2</sub>(H<sub>2</sub>O)<sub>10</sub> (TMEQ[6] = α,α′,δ,δ′-Tetramethylcucurbit[6]uril; X = Cl, Br)

    No full text
    A discrete dihalide–decahydrate cluster of [X<sub>2</sub>­(H<sub>2</sub>O)<sub>10</sub>]<sup>2–</sup> has been observed in a solid-state structure of {[Na<sub>2</sub>­(H<sub>2</sub>O)<sub>6</sub>­(H<sub>2</sub>O­@­TMEQ­[6])]·2­(C<sub>6</sub>H<sub>5</sub>­NO<sub>3</sub>)}­X<sub>2</sub>­(H<sub>2</sub>O)<sub>10</sub>} (TMEQ[6] = α,α′,δ,δ′-tetra­methyl­cucurbit[6]­uril; X = Cl (<b>1</b>), Br (<b>2</b>)). Its structure can be viewed as a connection of two [X­(H<sub>2</sub>O)<sub>3</sub>]<sup>−</sup> clusters with a uudd water tetramer through hydrogen-bonding interactions

    A Dihalide–Decahydrate Cluster of [X<sub>2</sub>(H<sub>2</sub>O)<sub>10</sub>]<sup>2–</sup> in a Supramolecular Architecture of {[Na<sub>2</sub>(H<sub>2</sub>O)<sub>6</sub>(H<sub>2</sub>O@TMEQ[6])]·2(C<sub>6</sub>H<sub>5</sub>NO<sub>3</sub>)}X<sub>2</sub>(H<sub>2</sub>O)<sub>10</sub> (TMEQ[6] = α,α′,δ,δ′-Tetramethylcucurbit[6]uril; X = Cl, Br)

    No full text
    A discrete dihalide–decahydrate cluster of [X<sub>2</sub>­(H<sub>2</sub>O)<sub>10</sub>]<sup>2–</sup> has been observed in a solid-state structure of {[Na<sub>2</sub>­(H<sub>2</sub>O)<sub>6</sub>­(H<sub>2</sub>O­@­TMEQ­[6])]·2­(C<sub>6</sub>H<sub>5</sub>­NO<sub>3</sub>)}­X<sub>2</sub>­(H<sub>2</sub>O)<sub>10</sub>} (TMEQ[6] = α,α′,δ,δ′-tetra­methyl­cucurbit[6]­uril; X = Cl (<b>1</b>), Br (<b>2</b>)). Its structure can be viewed as a connection of two [X­(H<sub>2</sub>O)<sub>3</sub>]<sup>−</sup> clusters with a uudd water tetramer through hydrogen-bonding interactions

    A Doped Lanthanide-Based Coordination Polymer Exhibiting High Relative Sensitivity to Ratiometric Luminescent Thermometers at 440 K

    No full text
    Ratiometric luminescent thermometers with excellent performance often require the luminescent materials to possess high thermal stability and relative sensitivity (Sr). However, such luminescent materials are very rare, especially in physiological (298–323 K) and high-temperature (>373 K) regions. Here we report the synthesis and luminescent property of [Tb0.995Eu0.005(pfbz)2(phen)Cl] (3), which not only exhibits high Sr in physiological temperature but also has a Sr up to 7.47% K–1 at 440 K, the largest Sr at 440 K in known lanthanide-based coordination compound luminescent materials

    Heterometallic Lanthanide–Titanium Oxo Clusters: A New Family of Water Oxidation Catalysts

    No full text
    We report the synthesis and photoelectrochemical activity of three lanthanide–titanium oxo clusters (LTOCs), formulated as [Ln<sub>8</sub>Ti<sub>10</sub>(μ<sub>3</sub>-O)<sub>14</sub>(tbba)<sub>34</sub>(Ac)<sub>2</sub>(H<sub>2</sub>O)<sub>4</sub>(THF)<sub>2</sub>]·2Htbba [Ln = Eu (<b>1</b>), Sm (<b>2</b>), and Gd (<b>3</b>); Htbba = 4-<i>tert</i>-butylbenzoic acid; Ac<sup>–</sup> = acetate]. These stable compounds are efficient catalysts of photoelectrochemical water oxidation with high turnover numbers (7581.0 for <b>1</b>, 5172.4 for <b>2</b>, and 5413.0 for <b>3</b>) and high turnover frequencies (2527.0 for <b>1</b>, 1724.1 for <b>2</b>, and 1804.0 for <b>3</b>). The differences in the photoelectrochemical activity among these three compounds may be related to the differences in their band gaps. This work shows that the heterometallic LTOCs provide a tunable platform for the design of highly effective water oxidation catalysts

    Photosensitizing Metal–Organic Framework Enabling Visible-Light-Driven Proton Reduction by a Wells–Dawson-Type Polyoxometalate

    No full text
    A simple and effective charge-assisted self-assembly process was developed to encapsulate a noble-metal-free polyoxometalate (POM) inside a porous and phosphorescent metal–organic framework (MOF) built from [Ru­(bpy)<sub>3</sub>]<sup>2+</sup>-derived dicarboxylate ligands and Zr<sub>6</sub>(μ<sub>3</sub>-O)<sub>4</sub>(μ<sub>3</sub>-OH)<sub>4</sub> secondary building units. Hierarchical organization of photosensitizing and catalytic proton reduction components in such a POM@MOF assembly enables fast multielectron injection from the photoactive framework to the encapsulated redox-active POMs upon photoexcitation, leading to efficient visible-light-driven hydrogen production. Such a modular and tunable synthetic strategy should be applicable to the design of other multifunctional MOF materials with potential in many applications
    corecore