135 research outputs found
A phase I trial of the selective oral cyclin-dependent kinase inhibitor seliciclib (CYC202; R-Roscovitine), administered twice daily for 7 days every 21 days
Seliciclib (CYC202; R-roscovitine) is the first selective, orally bioavailable inhibitor of cyclin-dependent kinases 1, 2, 7 and 9 to enter clinical trial. Preclinical studies showed antitumour activity in a broad range of human tumour xenografts. A phase I trial was performed with a 7-day b.i.d. p.o. schedule. Twenty-one patients (median age 62 years, range: 39–73 years) were treated with doses of 100, 200 and 800 b.i.d. Dose-limiting toxicities were seen at 800 mg b.i.d.; grade 3 fatigue, grade 3 skin rash, grade 3 hyponatraemia and grade 4 hypokalaemia. Other toxicities included reversible raised creatinine (grade 2), reversible grade 3 abnormal liver function and grade 2 emesis. An 800 mg portion was investigated further in 12 patients, three of whom had MAG3 renograms. One patient with a rapid increase in creatinine on day 3 had a reversible fall in renal perfusion, with full recovery by day 14, and no changes suggestive of renal tubular damage. Further dose escalation was precluded by hypokalaemia. Seliciclib reached peak plasma concentrations between 1 and 4 h and elimination half-life was 2–5 h. Inhibition of retinoblastoma protein phosphorylation was not demonstrated in peripheral blood mononuclear cells. No objective tumour responses were noted, but disease stabilisation was recorded in eight patients; this lasted for a total of six courses (18 weeks) in a patient with ovarian cancer
The stellar and sub-stellar IMF of simple and composite populations
The current knowledge on the stellar IMF is documented. It appears to become
top-heavy when the star-formation rate density surpasses about 0.1Msun/(yr
pc^3) on a pc scale and it may become increasingly bottom-heavy with increasing
metallicity and in increasingly massive early-type galaxies. It declines quite
steeply below about 0.07Msun with brown dwarfs (BDs) and very low mass stars
having their own IMF. The most massive star of mass mmax formed in an embedded
cluster with stellar mass Mecl correlates strongly with Mecl being a result of
gravitation-driven but resource-limited growth and fragmentation induced
starvation. There is no convincing evidence whatsoever that massive stars do
form in isolation. Various methods of discretising a stellar population are
introduced: optimal sampling leads to a mass distribution that perfectly
represents the exact form of the desired IMF and the mmax-to-Mecl relation,
while random sampling results in statistical variations of the shape of the
IMF. The observed mmax-to-Mecl correlation and the small spread of IMF
power-law indices together suggest that optimally sampling the IMF may be the
more realistic description of star formation than random sampling from a
universal IMF with a constant upper mass limit. Composite populations on galaxy
scales, which are formed from many pc scale star formation events, need to be
described by the integrated galactic IMF. This IGIMF varies systematically from
top-light to top-heavy in dependence of galaxy type and star formation rate,
with dramatic implications for theories of galaxy formation and evolution.Comment: 167 pages, 37 figures, 3 tables, published in Stellar Systems and
Galactic Structure, Vol.5, Springer. This revised version is consistent with
the published version and includes additional references and minor additions
to the text as well as a recomputed Table 1. ISBN 978-90-481-8817-
Measurement of asymmetries and branching-fraction ratios for and with using Belle and Belle II data
We measure asymmetries and branching-fraction ratios for and decays with , where
is a superposition of and . We use the full data set of the
Belle experiment, containing pairs, and data from the
Belle~II experiment, containing pairs, both collected
in electron-positron collisions at the resonance. Our results
provide model-independent information on the unitarity triangle angle .Comment: 26 pages, 8 figure
Tests of light-lepton universality in angular asymmetries of decays
We present the first comprehensive tests of light-lepton universality in the
angular distributions of semileptonic \Bz-meson decays to charged spin-1
charmed mesons. We measure five angular-asymmetry observables as functions of
the decay recoil that are sensitive to lepton-universality-violating
contributions. We use events where one neutral \B is fully reconstructed in
\PUpsilonFourS{} \to\B\overline{B} decays in data corresponding to \lumion
integrated luminosity from electron-positron collisions collected with the
\belletwo detector. We find no significant deviation from the standard model
expectations
Observation of decays using the 2019-2022 Belle II data sample
We present a measurement of the branching fractions of four decay modes. The measurement is based on data from
SuperKEKB electron-positron collisions at the resonance
collected with the Belle II detector and corresponding to an integrated
luminosity of . The event yields are extracted from fits
to the distributions of the difference between expected and observed meson
energy to separate signal and background, and are efficiency-corrected as a
function of the invariant mass of the system. We find the branching
fractions to be: where the first uncertainty is statistical and
the second systematic. These results include the first observation of
, , and decays and a significant improvement in the precision
of compared to previous measurements
Measurement of branching fractions and direct asymmetries for and decays at Belle II
We report measurements of the branching fractions and direct
asymmetries of the decays , , , and , and use these for testing the standard
model through an isospin-based sum rule. In addition, we measure the branching
fraction and direct asymmetry of the decay and
the branching fraction of the decay . The data are
collected with the Belle II detector from collisions at the
resonance produced by the SuperKEKB asymmetric-energy collider
and contain bottom-antibottom meson pairs. Signal yields are
determined in two-dimensional fits to background-discriminating variables, and
range from 500 to 3900 decays, depending on the channel. We obtain for the sum rule, in agreement with the standard model
expectation of zero and with a precision comparable to the best existing
determinations
Sarilumab in patients admitted to hospital with severe or critical COVID-19: a randomised, double-blind, placebo-controlled, phase 3 trial
Background: Elevated proinflammatory cytokines are associated with greater COVID-19 severity. We aimed to assess safety and efficacy of sarilumab, an interleukin-6 receptor inhibitor, in patients with severe (requiring supplemental oxygen by nasal cannula or face mask) or critical (requiring greater supplemental oxygen, mechanical ventilation, or extracorporeal support) COVID-19. Methods: We did a 60-day, randomised, double-blind, placebo-controlled, multinational phase 3 trial at 45 hospitals in Argentina, Brazil, Canada, Chile, France, Germany, Israel, Italy, Japan, Russia, and Spain. We included adults (≥18 years) admitted to hospital with laboratory-confirmed SARS-CoV-2 infection and pneumonia, who required oxygen supplementation or intensive care. Patients were randomly assigned (2:2:1 with permuted blocks of five) to receive intravenous sarilumab 400 mg, sarilumab 200 mg, or placebo. Patients, care providers, outcome assessors, and investigators remained masked to assigned intervention throughout the course of the study. The primary endpoint was time to clinical improvement of two or more points (seven point scale ranging from 1 [death] to 7 [discharged from hospital]) in the modified intention-to-treat population. The key secondary endpoint was proportion of patients alive at day 29. Safety outcomes included adverse events and laboratory assessments. This study is registered with ClinicalTrials.gov, NCT04327388; EudraCT, 2020-001162-12; and WHO, U1111-1249-6021. Findings: Between March 28 and July 3, 2020, of 431 patients who were screened, 420 patients were randomly assigned and 416 received placebo (n=84 [20%]), sarilumab 200 mg (n=159 [38%]), or sarilumab 400 mg (n=173 [42%]). At day 29, no significant differences were seen in median time to an improvement of two or more points between placebo (12·0 days [95% CI 9·0 to 15·0]) and sarilumab 200 mg (10·0 days [9·0 to 12·0]; hazard ratio [HR] 1·03 [95% CI 0·75 to 1·40]; log-rank p=0·96) or sarilumab 400 mg (10·0 days [9·0 to 13·0]; HR 1·14 [95% CI 0·84 to 1·54]; log-rank p=0·34), or in proportions of patients alive (77 [92%] of 84 patients in the placebo group; 143 [90%] of 159 patients in the sarilumab 200 mg group; difference −1·7 [−9·3 to 5·8]; p=0·63 vs placebo; and 159 [92%] of 173 patients in the sarilumab 400 mg group; difference 0·2 [−6·9 to 7·4]; p=0·85 vs placebo). At day 29, there were numerical, non-significant survival differences between sarilumab 400 mg (88%) and placebo (79%; difference +8·9% [95% CI −7·7 to 25·5]; p=0·25) for patients who had critical disease. No unexpected safety signals were seen. The rates of treatment-emergent adverse events were 65% (55 of 84) in the placebo group, 65% (103 of 159) in the sarilumab 200 mg group, and 70% (121 of 173) in the sarilumab 400 mg group, and of those leading to death 11% (nine of 84) were in the placebo group, 11% (17 of 159) were in the sarilumab 200 mg group, and 10% (18 of 173) were in the sarilumab 400 mg group. Interpretation: This trial did not show efficacy of sarilumab in patients admitted to hospital with COVID-19 and receiving supplemental oxygen. Adequately powered trials of targeted immunomodulatory therapies assessing survival as a primary endpoint are suggested in patients with critical COVID-19. Funding: Sanofi and Regeneron Pharmaceuticals
Measurement of the -lepton mass with the Belle~II experiment
We present a measurement of the -lepton mass using a sample of about
175 million events collected with the Belle II
detector at the SuperKEKB collider at a center-of-mass energy of
. This sample corresponds to an integrated
luminosity of . We use the kinematic edge of the
pseudomass distribution in the decay and
measure the mass to be , where the first uncertainty is statistical and the second
systematic. This result is the most precise to date
Measurement of asymmetries in decays with Belle II
We present a measurement of time-dependent rate asymmetries in decays to search for non-standard-model physics in transitions. The data sample is collected with the Belle II
detector at the SuperKEKB asymmetric-energy collider in 2019-2022
and contains bottom-antibottom mesons from
resonance decays. We reconstruct signal events and
extract the charge-parity () violating parameters from a fit to the
distribution of the proper-decay-time difference of the two mesons. The
measured direct and mixing-induced asymmetries are
and , respectively, where the first
uncertainties are statistical and the second are systematic. The results are
compatible with the asymmetries observed in
transitions
- …