3,052 research outputs found
Dimensionality of Carbon Nanomaterials Determines the Binding and Dynamics of Amyloidogenic Peptides: Multiscale Theoretical Simulations
Experimental studies have demonstrated that nanoparticles can affect the rate of protein self-assembly, possibly interfering with the development of protein misfolding diseases such as Alzheimer's, Parkinson's and prion disease caused by aggregation and fibril formation of amyloid-prone proteins. We employ classical molecular dynamics simulations and large-scale density functional theory calculations to investigate the effects of nanomaterials on the structure, dynamics and binding of an amyloidogenic peptide apoC-II(60-70). We show that the binding affinity of this peptide to carbonaceous nanomaterials such as C60, nanotubes and graphene decreases with increasing nanoparticle curvature. Strong binding is facilitated by the large contact area available for π-stacking between the aromatic residues of the peptide and the extended surfaces of graphene and the nanotube. The highly curved fullerene surface exhibits reduced efficiency for π-stacking but promotes increased peptide dynamics. We postulate that the increase in conformational dynamics of the amyloid peptide can be unfavorable for the formation of fibril competent structures. In contrast, extended fibril forming peptide conformations are promoted by the nanotube and graphene surfaces which can provide a template for fibril-growth
Non-Equilibrium Field Dynamics of an Honest Holographic Superconductor
Most holographic models of superconducting systems neglect the effects of
dynamical boundary gauge fields during the process of spontaneous
symmetry-breaking. Usually a global symmetry gets broken. This yields a
superfluid, which then is gauged "weakly" afterwards. In this work we build
(and probe the dynamics of) a holographic model in which a local boundary
symmetry is spontaneously broken instead. We compute two-point functions of
dynamical non-Abelian gauge fields in the normal and in the broken phase, and
find non-trivial gapless modes. Our AdS3 gravity dual realizes a p-wave
superconductor in (1+1) dimensions. The ground state of this model also breaks
(1+1)-dimensional parity spontaneously, while the Hamiltonian is
parity-invariant. We discuss possible implications of our results for a wider
class of holographic liquids.Comment: 32 pages, 12 figures; v3: string theory derivation of setup added
(section 3.1), improved presentation, version accepted by JHEP; v2: paragraph
added to discussion, figure added, references added, typos correcte
- …