106 research outputs found
Estrogen receptor transcription and transactivation: Estrogen receptor knockout mice - what their phenotypes reveal about mechanisms of estrogen action
Natural, synthetic and environmental estrogens have numerous effects on the development and physiology of mammals. Estrogen is primarily known for its role in the development and functioning of the female reproductive system. However, roles for estrogen in male fertility, bone, the circulatory system and immune system have been established by clinical observations regarding sex differences in pathologies, as well as observations following menopause or castration. The primary mechanism of estrogen action is via binding and modulation of activity of the estrogen receptors (ERs), which are ligand-dependent nuclear transcription factors. ERs are found in highest levels in female tissues critical to reproduction, including the ovaries, uterus, cervix, mammary glands and pituitary gland. Since other affected tissues have extremely low levels of ER, indirect effects of estrogen, for example induction of pituitary hormones that affect the bone, have been proposed. The development of transgenic mouse models that lack either estrogen or ER have proven to be valuable tools in defining the mechanisms by which estrogen exerts its effects in various systems. The aim of this article is to review the mouse models with disrupted estrogen signaling and describe the associated phenotypes
State and irrigation: archeological and textual evidence of water management in late Bronze Age China
Ancient China remains an important case to investigate the relationship between statecraft development and ‘total power.’ While important economic and social developments were achieved in the late Neolithic, it was not until the late Bronze Age (first millennium BC) that state-run irrigation systems began to be built. Construction of large-scale irrigation projects, along with walls and defensive facilities, became vital to regional states who were frequently involved in chaotic warfare and desperate to increase food production to feed the growing population. Some of the irrigation infrastructures were brought into light by recent archeological surveys. We scrutinize fast accumulating archeological evidence and review rich historical accounts on late Bronze Age irrigation systems. While the credibility of historical documents is often questioned, with a robust integration with archeological data, they provide important information to understand functions and maintenance of the irrigation projects. We investigate structure and organization of large-scale irrigation systems built and run by states and their importance to understanding dynamic trajectories to social power in late Bronze Age China. Cleverly designed based on local environmental and hydrological conditions, these projects fundamentally changed water management and farming patterns, with dramatic ecological consequences in different states. Special bureaucratic divisions were created and laws were made to further enhance the functioning of these large-scale irrigation systems. We argue that they significantly increased productivity by converting previously unoccupied land into fertile ground and pushed population threshold to a new level. A hypothesis should be tested in further archeological research
- …