11,822 research outputs found

    The Institutionalization of Institutional Theory

    Get PDF
    [Excerpt] Our primary aims in this effort are twofold: to clarify the independent theoretical contributions of institutional theory to analyses of organizations, and to develop this theoretical perspective further in order to enhance its use in empirical research. There is also a more general, more ambitious objective here, and that is to build a bridge between two distinct models of social actor that underlie most organizational analyses, which we refer to as a rational actor model and an institutional model. The former is premised on the assumption that individuals are constantly engaged in calculations of the costs and benefits of different action choices, and that behavior reflects such utility-maximizing calculations. In the latter model, by contrast, \u27oversocialized\u27 individuals are assumed to accept and follow social norms unquestioningly, without any real reflection or behavioral resistance based on their own particular, personal interests. We suggest that these two general models should be treated not as oppositional but rather as representing two ends of a continuum of decision-making processes and behaviors. Thus, a key problem for theory and research is to specify the conditions under which behavior is more likely to resemble one end of this continuum or the other. In short, what is needed are theories of when rationality is likely to be more or less bounded. A developed conception of institutionalization processes provides a useful point of departure for exploring this issue

    A model for projectile fragmentation

    Full text link
    A model for projectile fragmentation is developed whose origin can be traced back to the Bevalac era. The model positions itself between the phenomenological EPAX parametrization and transport models like "Heavy Ion Phase Space Exploration" (HIPSE) model and antisymmetrised molecular dynamics (AMD) model. A very simple impact parameter dependence of input temperature is incorporated in the model which helps to analyze the more peripheral collisions. The model is applied to calculate the charge, isotopic distributions, average number of intermediate mass fragments and the average size of largest cluster at different Z_{bound} of different projectile fragmentation reactions at different energies.Comment: Talk given by Gargi Chaudhuri at the 11th International Conference on Nucleus-Nucleus Collisions (NN2012), San Antonio, Texas, USA, May 27-June 1, 2012. 10 pages, 7 figure

    Origin of Electric Field Induced Magnetization in Multiferroic HoMnO3

    Full text link
    We have performed polarized and unpolarized small angle neutron scattering experiments on single crystals of HoMnO3 and have found that an increase in magnetic scattering at low momentum transfers begins upon cooling through temperatures close to the spin reorientation transition at TSR ~ 40 K. We attribute the increase to an uncompensated magnetization arising within antiferromagnetic domain walls. Polarized neutron scattering experiments performed while applying an electric field show that the field suppresses magnetic scattering below T ~ 50 K, indicating that the electric field affects the magnetization via the antiferromagnetic domain walls rather than through a change to the bulk magnetic order

    Ecology

    Get PDF

    Multi-chord fiber-coupled interferometer with a long coherence length laser

    Full text link
    This paper describes a 561 nm laser heterodyne interferometer that provides time-resolved measurements of line-integrated plasma electron density within the range of 10^15-10^18 cm^(-2). Such plasmas are produced by railguns on the Plasma Liner Experiment (PLX), which aims to produce \mu s-, cm-, and Mbar-scale plasmas through the merging of thirty plasma jets in a spherically convergent geometry. A long coherence length, 320 mW laser allows for a strong, sub-fringe phase-shift signal without the need for closely-matched probe and reference path lengths. Thus only one reference path is required for all eight probe paths, and an individual probe chord can be altered without altering the reference or other probe path lengths. Fiber-optic decoupling of the probe chord optics on the vacuum chamber from the rest of the system allows the probe paths to be easily altered to focus on different spatial regions of the plasma. We demonstrate that sub-fringe resolution capability allows the interferometer to operate down to line-integrated densities of order 10^15 cm^(-2).Comment: submitted to Rev. Sci. Instrum. (2011

    Neutron scattering study of novel magnetic order in Na0.5CoO2

    Full text link
    We report polarized and unpolarized neutron scattering measurements of the magnetic order in single crystals of Na0.5CoO2. Our data indicate that below T_N=88 K the spins form a novel antiferromagnetic pattern within the CoO2 planes, consisting of alternating rows of ordered and non-ordered Co ions. The domains of magnetic order are closely coupled to the domains of Na ion order, consistent with such a two-fold symmetric spin arrangement. Magnetoresistance and anisotropic susceptibility measurements further support this model for the electronic ground state.Comment: 4 pages, 4 figure

    Q-stars and charged q-stars

    Full text link
    We present the formalism of q-stars with local or global U(1) symmetry. The equations we formulate are solved numerically and provide the main features of the soliton star. We study its behavior when the symmetry is local in contrast to the global case. A general result is that the soliton remains stable and does not decay into free particles and the electrostatic repulsion preserves it from gravitational collapse. We also investigate the case of a q-star with non-minimal energy-momentum tensor and find that the soliton is stable even in some cases of collapse when the coupling to gravity is absent.Comment: Latex, 19pg, 12 figures. Accepted in Phys. Rev.

    Unconventional Metallic Magnetism in LaCrSb{3}

    Get PDF
    Neutron-diffraction measurements in LaCrSb{3} show a coexistence of ferromagnetic and antiferromagnetic sublattices below Tc=126 K, with ordered moments of 1.65(4) and 0.49(4) Bohr magnetons per formula unit, respectively (T=10 K), and a spin reorientation transition at ~95 K. No clear peak or step was observed in the specific heat at Tc. Coexisting localized and itinerant spins are suggested.Comment: PRL, in pres

    Intrinsic Localized Modes Observed in the High Temperature Vibrational Spectrum of NaI

    Full text link
    Inelastic neutron measurements of the high-temperature lattice excitations in NaI show that in thermal equilibrium at 555 K an intrinsic mode, localized in three dimensions, occurs at a single frequency near the center of the spectral phonon gap, polarized along [111]. At higher temperatures the intrinsic localized mode gains intensity. Higher energy inelastic neutron and x-ray scattering measurements on a room-temperature NaI crystal indicate that the creation energy of the ground state of the intrinsic localized mode is 299 meV.Comment: 17 pages, 5 figures Revised version; final versio
    corecore