24,898 research outputs found
High-tip-speed fiber composite compressor blades: Vibration and strength analysis
An analytical procedure is described which couples composite mechanics computer codes with NASTRAN. This procedure was used to perform a detailed analysis of a high-tip-speed fiber composite compressor fan blade. The results indicate that the various vibration modes of this blade are highly coupled. Mechanical load ply stresses are well below the corresponding room temperature strengths. Lamination residual stresses are likely to cause transply cracks and interply delamination. Transply cracks and relaxation of root fixity decrease the vibrational frequencies whereas centrifugal stiffening increases them. Comparisons of results for various parameters are presented in tabular and graphical form
Innovative techniques for the production of energetic radicals for lunar materials processing including photogeneration via concentrated solar energy
The Department of Materials Science and Engineering (MSE) is investigating the use of monatomic chlorine produced in a cold plasma to recover oxygen and metallurgically significant metals from lunar materials. Development of techniques for the production of the chlorine radical (and other energetic radicals for these processes) using local planetary resources is a key step for a successful approach. It was demonstrated terrestrially that the use of UV light to energize the photogeneration of OH radicals from ozone or hydrogen peroxide in aqueous solutions can lead to rapid reaction rates for the breakdown of toxic organic compounds in water. A key question is how to use the expanded solar resource at the lunar surface to generate process-useful radicals. This project is aimed at investigating that question
Innovative techniques for the production of energetic radicals for lunar materials processing including photogeneration via concentrated solar energy
A technique for photo generation of radicals is discussed that can be used in the recovery of oxygen and metals from extraterrestrial resources. The concept behind this work was to examine methods whereby radicals can be generated and used in the processing of refractory materials. In that regard, the focus is on the use of sunlight. Sunlight provides useful energy for processing in the forms of both thermal and quantum energy. A number of experiments were conducted in the chlorination of metals with and without the aid of UV and near UV light. The results of some of those experiments are discussed
Compression of Martian atmosphere for production of oxygen
The compression of CO2 from the Martian atmosphere for production of O2 via an electrochemical cell is addressed. Design specifications call for an oxygen production rate of 10 kg per day and for compression of 50 times that mass of CO2. Those specifications require a compression rate of over 770 cfm at standard Martian temperature and pressure (SMTP). Much of the CO2 being compressed represents waste, unless it can be recycled. Recycling can reduce the volume of gas that must be compressed to 40 cfm at SMTP. That volume reduction represents significant mass savings in the compressor, heating equipment, filters, and energy source. Successful recycle of the gas requires separation of CO (produced in the electrochemical cell) from CO2, N2, and Ar found in the Martian atmosphere. That aspect was the focus of this work
Magnetic-Island Contraction and Particle Acceleration in Simulated Eruptive Solar Flares
The mechanism that accelerates particles to the energies required to produce
the observed high-energy impulsive emission in solar flares is not well
understood. Drake et al. (2006) proposed a mechanism for accelerating electrons
in contracting magnetic islands formed by kinetic reconnection in multi-layered
current sheets. We apply these ideas to sunward-moving flux ropes (2.5D
magnetic islands) formed during fast reconnection in a simulated eruptive
flare. A simple analytic model is used to calculate the energy gain of
particles orbiting the field lines of the contracting magnetic islands in our
ultrahigh-resolution 2.5D numerical simulation. We find that the estimated
energy gains in a single island range up to a factor of five. This is higher
than that found by Drake et al. for islands in the terrestrial magnetosphere
and at the heliopause, due to strong plasma compression that occurs at the
flare current sheet. In order to increase their energy by two orders of
magnitude and plausibly account for the observed high-energy flare emission,
the electrons must visit multiple contracting islands. This mechanism should
produce sporadic emission because island formation is intermittent. Moreover, a
large number of particles could be accelerated in each
magnetohydrodynamic-scale island, which may explain the inferred rates of
energetic-electron production in flares. We conclude that island contraction in
the flare current sheet is a promising candidate for electron acceleration in
solar eruptions.Comment: Accepted for publication in The Astrophysical Journal (2016
Ileocecal Adenocarcinoma and Ureteral Transitional Cell Carcinoma with Multiple Sebaceous Tumors and Keratoacanthomas in a Case of Muir-Torre Syndrome
Cutaneous neoplasms including sebaceous tumors, keratoacanthomas, and basal cell carcinomas with sebaceous differentiation can be markers of internal malignancy associated with the Muir-Torre Syndrome (MTS). We report a 56-year-old man with a diagnosis of hereditary nonpolyposis colorectal cancer (HNPCC) and ureteral transitional cell carcinoma who subsequently developed two sebaceous gland neoplasms and several keratoacanthomas, leading to the diagnosis of MTS. Our case highlights the clinical advantages of immunohistochemistry (IHC) in identifying mutations in the mismatch repair (MMR) genes responsible for both HNPCC and MTS. The importance of continued clinical suspicion in the dermatological assessment of patients with sebaceous neoplasms is emphasized
Modulation spectroscopy at nonānormal incidence with emphasis on the vacuumāuv spectral region
Expressions are given to analyze modulation spectra taken at nonānormal incidence. These expressions are used to determine the optimum angle of incidence to maximize the signalātoānoise ratio. Significant improvements are shown to be obtained in the vacuumāuv spectral region by making measurements at relatively large angles of incidence. We apply these expressions to evaluate the fieldāinduced change in the dielectric function for the 20.5ā21.0āeV coreālevel doublet in GaP from Schottkyābarrier electroreflectance data. The line shape obtained is consistent with that of a fieldāmodulated M 0critical point modified by a Coulomb attraction between the core hole and the excited electron
Electroreflectance of GaAs and GaP to 27 eV using synchrotron radiation
Electroreflectrance (ER) spectra of GaAs and GaP, taken with the Schottky-barrier method, exhibit to 27 eV the strong structural enchancement and high resolution characteristic of similar measurements below 6 eV. Above 20 eV, a new set of critical points is observed between the flat valence bands derived from the Ga 3d core levels and the local extrema of the sp3 conduction bands. The attained resolution, of the order of 100 meV, enables us to resolve clearly the spin-orbit splitting of 0.45 eV of the 3d-derived valence bands. The following critical-point energies have been determined in GaAs and GaP, respectively. sp3 valence conduction: E1ā², 6.63 Ā± 0.05 eV, and 6.80 Ā± 0.05 eV; E1ā²+Ī1ā², 6.97 Ā± 0.05 eV (GaAs only); E0\u27\u27(Īv15āĪc12), 10.53 eV, and 9.38 Ā± 0.1 eV; E0\u27\u27\u27(Īv15āĪc1), 8.33 Ā± 0.1 eV, and 10.27 Ā± 0.1 eV, E1\u27\u27, 9.5 Ā± 0.2 eV, and 10.7 Ā± 0.2 eV. E5, E6, and E7 structures are observed at 15.1, 16.7, and 17.9 eV in GaAs, and at 14.7, 16.1, and 18.6 eV in GaP. Relative values of 3d core to sp3 conduction-band matrix elements are estimated for several states and show that the lowest 3d core-level ER structures arise from transitions terminating at the Xc1conduction-band minimum. We calculate an exciton or core-hole interaction shift of 150 meV for GaP and 200 meV for GaAs, which indicates that core-hole effects are probably small for these materials. Spectral features with initial structure less than 100 meV in width are observed above 20 eV, showing that broadening effects are much smaller in this energy range than previously believed
Optical properties (0.1-25 eV) of Nb-Mo and other Nb-based alloys
The dielectric functions of NbxMo1āx alloys (x=0.2,0.5,0.8) and of Nb with 10-at.% Zr, with 20-at.% V, and with 20-at.% Ta were determined in the 0.1-25 eV energy range. Some of the interband region below 3 eV can be interpreted on the basis of the rigid-band model for Nb-Mo while the large structure at 4-4.5 eV cannot be so interpreted in any of the alloys using existing bands. An examination of all the alloys shows that there probably are distortions of the bands due to strain and potential differences. The transitions beginning at about 9 eV, from the Fermi level to a flat band above, are seen to have delocalized final states. All the alloys show two volume and two surface plasmons like those of Nb and Mo
Electroreflectance of GaSb from 0.6 to 26 eV
Schottky barrier electroreflectance spectra are reported for GaSb from 0.6 to 26 eV. Accurate energies are determined for a number of critical points between the sp3 and Gaā3d valence bands and the conduction bands. The energy of XV7 is shown to lie at least 3 eV below ĪV8. This is below the value obtained from local pseudopotential calculations and the x-ray photoemission assignments, but follows a trend previously established by nonlocal pseudopotential calculations for Ge and GaAs. The Ga 3d-XC6 exciton binding energy is of the order of 100 meV
- ā¦