17 research outputs found

    Protective effects of PPAR  agonist in acute nephrotic syndrome

    No full text
    BACKGROUND. Peroxisome proliferator-activated receptor gamma (PPARγ) agonists have beneficial effects on renal structure and function in models of diabetes and chronic kidney diseases. However, the increased incidence of weight gain and edema potentially limits their usefulness. We studied an acute minimal-change disease-like nephrotic syndrome model to assess effects of PPARγ agonist on acute podocyte injury and effects on fluid homeostasis. METHODS. Acute podocyte injury and nephrotic syndrome were induced by puromycin aminonucleoside (PAN) injection in rats. RESULTS. PPARγ agonist, given at the time or after, but not before PAN, reduced proteinuria, restored synaptopodin, decreased desmin and trended to improve foot process effacement. There was no significant difference in glomerular filtration, effective circulating volume, blood pressure or fractional sodium excretion. PAN-injured podocytes had decreased PPARγ, less nephrin and α-actinin-4, more apoptosis and reduced phosphorylated Akt. In PAN-injured cultured podocytes, PPARγ agonist also reversed abnormalities only when given simultaneously or after injury. CONCLUSIONS. These results show that PPARγ agonist has protective effects on podocytes in acute nephrotic syndrome without deleterious effects on fluid homeostasis. PPARγ agonist-induced decrease in proteinuria in acute nephrotic syndrome is dependent at least partially on regulation of peroxisome proliferator-response element-sensitive gene expression such as α-actinin-4 and nephrin and the restoration of podocyte structure

    Decomposition behaviors of various crystalline celluloses as treated by semi-flow hot-compressed water

    Get PDF
    Various types of crystalline cellulose consisting of group I (cell I, IIII, IVI) and group II (cell II, IIIII, IVII) prepared from cotton linter were adjusted for their degree of polymerization (DP) as starting materials. These celluloses were then treated by semi-flow hot-compressed water (HCW) at 230–270 °C/10 MPa/2–15 min to study their decomposition behaviors. The treatments performed resulted in residues of celluloses and water-soluble (WS) portions. Consequently, the crystallinity of the residues was found to remain the same, but the DP was reduced as the temperature increased. Additionally, X-ray diffractometry and Fourier transform-infrared analyses demonstrated that crystallographic changes occurred for residues of cell IIII, IVI and IIIII. Despite these changes, the overall results of the residues showed that group I has higher resistance to decomposing than group II. As for the WS portions, the yields of the hydrolyzed and degraded products were higher in group II than group I, indicating that group II is less resistant to decomposition by HCW treatment. Results for both the residues and WS portions are in agreement with each other, showing that the degree of difficulty of decomposition was higher in group I than group II. Therefore, the decomposition behaviors of the celluloses are due to differences in the crystalline forms
    corecore