150 research outputs found
Evolution of star formation in the UKIDSS ultra deep survey field-I. Luminosity functions and cosmic star formation rate out to z = 1.6
We present new results on the cosmic star formation history in the Subaru/XMM-Newton Deep Survey (SXDS)-Ultra Deep Survey (UDS) field out to z = 1.6. We compile narrowband data from the Subaru Telescope and the Visible and Infrared Survey Telescope forAstronomy (VISTA) in conjunction with broad-band data from the SXDS and UDS, to makea selection of 5725 emission-line galaxies in 12 redshift slices, spanning 10 Gyr of cosmictime. We determine photometric redshifts for the sample using 11-band photometry, and usea spectroscopically confirmed subset to fine tune the resultant redshift distribution. We usethe maximum-likelihood technique to determine luminosity functions in each redshift slice and model the selection effects inherent in any narrow-band selection statistically, to obviatethe retrospective corrections ordinarily required. The deep narrow-band data are sensitive tovery low star formation rates (SFRs), and allow an accurate evaluation of the faint end slopeof the Schechter function, α We find that a is particularly sensitive to the assumed faintest broad-band magnitude of a galaxy capable of hosting an emission line, and propose thatthis limit should be empirically motivated. For this analysis, we base our threshold on thelimiting observed equivalent widths of emission lines in the local Universe. We compute thecharacteristic SFR of galaxies in each redshift slice, and the integrated SFR density,ρ SFR. Wefind our results to be in good agreement with the literature and parametrize the evolution of the SFR density as ρ SFR α(1 + z)4.58 confirming a steep decline in star formation activity since z ~ 1.6.Peer reviewe
The impact of hyperbaric oxygen therapy on serological values of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF)
<p>Abstract</p> <p>Background</p> <p>Hyperbaric oxygen (HBO) therapy is an effective adjunct treatment for ischemic disorders such as chronic infection or chronic wounds. It combines hyperoxic effects with the stimulating potential of post-therapeutic reactive hypoxia. As its crucial effects, stimulation of fibroblast growth, induction of collagen synthesis and the initiation of angiogenesis are discussed. Angiogenesis is a multistage process resulting in the growth of blood vessels. It includes degradation of extracellular matrix, proliferation and migration of different cell populations and finally formation of new vessel structures. This complex chain of procedures is orchestrated by different cytokines and growth factors. Crucial mediators of angiogenesis are basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF); their <it>in-vivo </it>function is still not fully understood.</p> <p>Methods</p> <p>Forty-three patients suffering from sudden sensorineural hearing loss or tinnitus were treated with HBO. The therapy included 10 sessions of 90 minutes each, one session a day. Serological levels of bFGF and VEGF were assessed by enzyme-linked immunosorbent assays performed according to the manufacturer's instructions on day 1, 2, 5 and 10 of HBO therapy and were compared to mean values of the control group, related to the patient's age and sex, and their development observed over the ten days of HBO.</p> <p>Results</p> <p>There was no sex- or age dependency of bFGF observed in the present study, whereas under HBO our results showed a significant mitigation of the bFGF concentration. In the present data, there was no connection between the VEGF concentration and the patients' ages. Women showed significantly higher levels of VEGF. There was no significant change of VEGF concentration or the VEGF/bFGF ratio during HBO. All scored results varied within the range of standard values as described in the current literature.</p> <p>Conclusions</p> <p>A significant effect of HBO on serum concentrations of bFGF and VEGF was not verified in the present study. Additional application of exogenous growth factors in conjunction with HBO was not obviously linked by a coherent cause-and-effect chain as far as wound healing is concerned.</p
Hypermutable Non-Synonymous Sites Are under Stronger Negative Selection
Mutation rate varies greatly between nucleotide sites of the human genome and depends both on the global genomic location and the local sequence context of a site. In particular, CpG context elevates the mutation rate by an order of magnitude. Mutations also vary widely in their effect on the molecular function, phenotype, and fitness. Independence of the probability of occurrence of a new mutation's effect has been a fundamental premise in genetics. However, highly mutable contexts may be preserved by negative selection at important sites but destroyed by mutation at sites under no selection. Thus, there may be a positive correlation between the rate of mutations at a nucleotide site and the magnitude of their effect on fitness. We studied the impact of CpG context on the rate of human–chimpanzee divergence and on intrahuman nucleotide diversity at non-synonymous coding sites. We compared nucleotides that occupy identical positions within codons of identical amino acids and only differ by being within versus outside CpG context. Nucleotides within CpG context are under a stronger negative selection, as revealed by their lower, proportionally to the mutation rate, rate of evolution and nucleotide diversity. In particular, the probability of fixation of a non-synonymous transition at a CpG site is two times lower than at a CpG site. Thus, sites with different mutation rates are not necessarily selectively equivalent. This suggests that the mutation rate may complement sequence conservation as a characteristic predictive of functional importance of nucleotide sites
Mutation Accumulation May Be a Minor Force in Shaping Life History Traits
Is senescence the adaptive result of tradeoffs between younger and older ages or the nonadaptive burden of deleterious mutations that act at older ages? To shed new light on this unresolved question we combine adaptive and nonadaptive processes in a single model. Our model uses Penna's bit-strings to capture different age-specific mutational patterns. Each pattern represents a genotype and for each genotype we find the life history strategy that maximizes fitness. Genotypes compete with each other and are subject to selection and to new mutations over generations until equilibrium in gene-frequencies is reached. The mutation-selection equilibrium provides information about mutational load and the differential effects of mutations on a life history trait - the optimal age at maturity. We find that mutations accumulate only at ages with negligible impact on fitness and that mutation accumulation has very little effect on the optimal age at maturity. These results suggest that life histories are largely determined by adaptive processes. The non-adaptive process of mutation accumulation seems to be unimportant at evolutionarily relevant ages
Hypermutable Non-Synonymous Sites Are under Stronger Negative Selection
Mutation rate varies greatly between nucleotide sites of the human genome and depends both on the global genomic location and the local sequence context of a site. In particular, CpG context elevates the mutation rate by an order of magnitude. Mutations also vary widely in their effect on the molecular function, phenotype, and fitness. Independence of the probability of occurrence of a new mutation's effect has been a fundamental premise in genetics. However, highly mutable contexts may be preserved by negative selection at important sites but destroyed by mutation at sites under no selection. Thus, there may be a positive correlation between the rate of mutations at a nucleotide site and the magnitude of their effect on fitness. We studied the impact of CpG context on the rate of human–chimpanzee divergence and on intrahuman nucleotide diversity at non-synonymous coding sites. We compared nucleotides that occupy identical positions within codons of identical amino acids and only differ by being within versus outside CpG context. Nucleotides within CpG context are under a stronger negative selection, as revealed by their lower, proportionally to the mutation rate, rate of evolution and nucleotide diversity. In particular, the probability of fixation of a non-synonymous transition at a CpG site is two times lower than at a CpG site. Thus, sites with different mutation rates are not necessarily selectively equivalent. This suggests that the mutation rate may complement sequence conservation as a characteristic predictive of functional importance of nucleotide sites
Cross-Attraction between an Exotic and a Native Pine Bark Beetle: A Novel Invasion Mechanism?
Aside from the ecological impacts, invasive species fascinate ecologists because of the unique opportunities that invasives offer in the study of community ecology. Some hypotheses have been proposed to illustrate the mechanisms that allow exotics to become invasive. However, positive interactions between exotic and native insects are rarely utilized to explain invasiveness of pests.Here, we present information on a recently formed association between a native and an exotic bark beetle on their shared host, Pinus tabuliformis, in China. In field examinations, we found that 35-40% of P. tabuliformis attacked by an exotic bark beetle, Dendroctonus valens, were also attacked by a native pine bark beetle, Hylastes parallelus. In the laboratory, we found that the antennal and walking responses of H. parallelus to host- and beetle-produced compounds were similar to those of the exotic D. valens in China. In addition, D. valens was attracted to volatiles produced by the native H. parallelus.We report, for the first time, facilitation between an exotic and a native bark beetle seems to involve overlap in the use of host attractants and pheromones, which is cross-attraction. The concept of this interspecific facilitation could be explored as a novel invasive mechanism which helps explain invasiveness of not only exotic bark beetles but also other introduced pests in principle. The results reported here also have particularly important implications for risk assessments and management strategies for invasive species
Characterization of Archaeal Community in Contaminated and Uncontaminated Surface Stream Sediments
Archaeal communities from mercury and uranium-contaminated freshwater stream sediments were characterized and compared to archaeal communities present in an uncontaminated stream located in the vicinity of Oak Ridge, TN, USA. The distribution of the Archaea was determined by pyrosequencing analysis of the V4 region of 16S rRNA amplified from 12 streambed surface sediments. Crenarchaeota comprised 76% of the 1,670 archaeal sequences and the remaining 24% were from Euryarchaeota. Phylogenetic analysis further classified the Crenarchaeota as a Freshwater Group, Miscellaneous Crenarchaeota group, Group I3, Rice Cluster VI and IV, Marine Group I and Marine Benthic Group B; and the Euryarchaeota into Methanomicrobiales, Methanosarcinales, Methanobacteriales, Rice Cluster III, Marine Benthic Group D, Deep Sea Hydrothermal Vent Euryarchaeota 1 and Eury 5. All groups were previously described. Both hydrogen- and acetate-dependent methanogens were found in all samples. Most of the groups (with 60% of the sequences) described in this study were not similar to any cultivated isolates, making it difficult to discern their function in the freshwater microbial community. A significant decrease in the number of sequences, as well as in the diversity of archaeal communities was found in the contaminated sites. The Marine Group I, including the ammonia oxidizer Nitrosopumilus maritimus, was the dominant group in both mercury and uranium/nitrate-contaminated sites. The uranium-contaminated site also contained a high concentration of nitrate, thus Marine Group I may play a role in nitrogen cycle
Ubiquitous mitochondrial creatine kinase downregulated in oral squamous cell carcinoma
In this study, we performed two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption/ionisation time of fly mass spectrometry to identify the protein(s) associated with the development of oral squamous cell carcinomas (OSCCs) by comparing patterns of OSCC-derived cell lines with normal oral keratinocytes (NOKs), and found that downregulation of ubiquitous mitochondrial creatine kinase (CKMT1) could be a good candidate. Decreased levels of CKMT1 mRNA and protein were detected in all OSCC-derived cell lines examined (n=9) when compared to those in primary normal oral keratinocytes. Although no sequence variation in the coding region of the CKMT1 gene with the exception of a nonsense mutation in exon 8 was identified in these cell lines, we found a frequent hypermethylation in the CpG island region. CKMT1 expression was restored by experimental demethylation. In addition, when we transfected CKMT1 into the cell lines, they showed an apoptotic phenotype but no invasiveness. In clinical samples, high frequencies of CKMT1 downregulation were detected by immunohistochemistry (19 of 52 (37%)) and quantitative real-time RT–PCR (21 of 50 (42%)). Furthermore, the CKMT1 expression status was significantly correlated with tumour differentiation (P<0.0001). These results suggest that the CKMT1 gene is frequently inactivated during oral carcinogenesis and that an epigenetic mechanism may regulate loss of expression, which may lead to block apoptosis
- …