80 research outputs found

    Phase Diagram and High Temperature Superconductivity at 65 K in Tuning Carrier Concentration of Single-Layer FeSe Films

    Full text link
    Superconductivity in the cuprate superconductors and the Fe-based superconductors is realized by doping the parent compound with charge carriers, or by application of high pressure, to suppress the antiferromagnetic state. Such a rich phase diagram is important in understanding superconductivity mechanism and other physics in the Cu- and Fe-based high temperature superconductors. In this paper, we report a phase diagram in the single-layer FeSe films grown on SrTiO3 substrate by an annealing procedure to tune the charge carrier concentration over a wide range. A dramatic change of the band structure and Fermi surface is observed, with two distinct phases identified that are competing during the annealing process. Superconductivity with a record high transition temperature (Tc) at ~65 K is realized by optimizing the annealing process. The wide tunability of the system across different phases, and its high-Tc, make the single-layer FeSe film ideal not only to investigate the superconductivity physics and mechanism, but also to study novel quantum phenomena and for potential applications.Comment: 15 pages, 4 figure

    International expert consensus on the management of bleeding during VATS lung surgery

    Get PDF
    Intraoperative bleeding is the most crucial safety concern of video-assisted thoracic surgery (VATS) for a major pulmonary resection. Despite the advances in surgical techniques and devices, intraoperative bleeding is still not rare and remains the most common and potentially fatal cause of conversion from VATS to open thoracotomy. Therefore, to guide the clinical practice of VATS lung surgery, we proposed the International Interest Group on Bleeding during VATS Lung Surgery with 65 experts from 10 countries in the field to develop this consensus document. The consensus was developed based on the literature reports and expert experience from different countries. The causes and incidence of intraoperative bleeding were summarised first. Seven situations of intraoperative bleeding were collected based on clinical practice, including the bleeding from massive vessel injuries, bronchial arteries, vessel stumps, and bronchial stumps, lung parenchyma, lymph nodes, incisions, and the chest wall. The technical consensus for the management of intraoperative bleeding was achieved on these seven surgical situations by six rounds of repeated revision. Following expert consensus statements were achieved: (I) Bleeding from major vascular injuries: direct compression with suction, retracted lung, or rolled gauze is useful for bleeding control. The size and location of the vascular laceration are evaluated to decide whether the bleeding can be stopped by direct compression or by ligation. If suturing is needed, the suction-compressing angiorrhaphy technique (SCAT) is recommended. Timely conversion to thoracotomy with direct compression is required if the operator lacks experience in thoracoscopic angiorrhaphy. (II) Bronchial artery bleeding: pre-emptive clipping of bronchial artery before bronchial dissection or lymph node dissection can reduce the incidence of bleeding. Bronchial artery bleeding can be stopped by compression with the suction tip, followed by the handling of the vascular stump with energy devices or clips. (III) Bleeding from large vessel stumps and bronchial stumps: bronchial stump bleeding mostly comes from accompanying bronchial artery, which can be clipped for hemostasis. Compression for hemostasis is usually effective for bleeding at the vascular stump. Otherwise, additional use of hemostatic materials, re-staple or a suture may be necessary. (IV) Bleeding from the lung parenchyma: coagulation hemostasis is the first choice. For wounds with visible air leakage or an insufficient hemostatic effect of coagulation, suturing may be necessary. (V) Bleeding during lymph node dissection: non-grasping en-bloc lymph node dissection is recommended for the nourishing vessels of the lymph node are addressed first with this technique. If bleeding occurs at the site of lymph node dissection, energy devices can be used for hemostasis, sometimes in combination with hemostatic materials. (VI) Bleeding from chest wall incisions: the chest wall incision(s) should always be made along the upper edge of the rib(s), with good hemostasis layer by layer. Recheck the incision for hemostasis before closing the chest is recommended. (VII) Internal chest wall bleeding: it can usually be managed with electrocoagulation. For diffuse capillary bleeding with the undefined bleeding site, compression of the wound with gauze may be helpful

    An Adaptive Fuzzy Logic System for the Compensation of Nonlinear Distortion in Wireless Power Amplifiers

    Get PDF
    Computational intelligent systems are becoming an increasingly attractive solution for power amplifier (PA) behavioural modelling, due to their excellent approximation capability. This paper utilizes an adaptive fuzzy logic system (AFLS) for the modelling of the highly nonlinear MIMIX CFH2162-P3 PA. Moreover, PA’s inverse model based also on AFLS has been developed in order to act as a pre-distorter unit. Driving an LTE 1.4 MHz 64 QAM signal at 880 MHz as centre frequency at PA’s input, very good modelling performance was achieved, for both PA’s forward and inverse dynamics. A comparative study of AFLS and neural networks (NN) has been carried out to establish AFLS as an effective, robust, and easy-to-implement baseband model, which is suitable for inverse modelling of PAs and capable to be used as an effective digital pre-distorter. Pre-distortion system based on AFLS, achieved distortion suppression of 84.2%, compared to the 48.4% gained using the NN-based equivalent schem

    Removal of Low-Content Impurities from Al By Super-Gravity

    No full text
    Super-gravity segregation was investigated to enrich and remove the low-content impurities from Al by solidifying Al under a super-gravity field. The macrosegregations of Fe (0.19 wt pct) and Si (0.09 wt pct) were remarkable within 1.5 cm along the direction of super gravity, and the concentration ratios between two sides under super gravity of 1000 g reached 4.05 and 2.80, respectively. The microstructures demonstrated that Fe-and Si-rich phases formed and gathered at the bottom along the direction of super-gravity field

    6,8-di- C

    No full text
    corecore