281 research outputs found

    Critical change in the Fermi surface of iron arsenic superconductors at the onset of superconductivity

    Full text link
    The phase diagram of a correlated material is the result of a complex interplay between several degrees of freedom, providing a map of the material's behavior. One can understand (and ultimately control) the material's ground state by associating features and regions of the phase diagram, with specific physical events or underlying quantum mechanical properties. The phase diagram of the newly discovered iron arsenic high temperature superconductors is particularly rich and interesting. In the AE(Fe1-xTx)2As2 class (AE being Ca, Sr, Ba, T being transition metals), the simultaneous structural/magnetic phase transition that occurs at elevated temperature in the undoped material, splits and is suppressed by carrier doping, the suppression being complete around optimal doping. A dome of superconductivity exists with apparent equal ease in the orthorhombic / antiferromagnetic (AFM) state as well as in the tetragonal state with no long range magnetic order. The question then is what determines the critical doping at which superconductivity emerges, if the AFM order is fully suppressed only at higher doping values. Here we report evidence from angle resolved photoemission spectroscopy (ARPES) that critical changes in the Fermi surface (FS) occur at the doping level that marks the onset of superconductivity. The presence of the AFM order leads to a reconstruction of the electronic structure, most significantly the appearance of the small hole pockets at the Fermi level. These hole pockets vanish, i. e. undergo a Lifshitz transition, at the onset of superconductivity. Superconductivity and magnetism are competing states in the iron arsenic superconductors. In the presence of the hole pockets superconductivity is fully suppressed, while in their absence the two states can coexist.Comment: Updated version accepted in Nature Physic

    Quantifying Quality of Life and Disability of Patients with Advanced Schistosomiasis Japonica

    Get PDF
    Advanced schistosomiasis japonica, an extreme form of chronic schistosomiasis that occurs in Asia, is more serious than the advanced hepatosplenic disease of schistosomiasis encountered in Africa and the Americas. The advanced schistosomiasis japonica is a chronic disabling condition associated with portal hypertension, splenomegaly, ascites, and gastro-oesophageal variceal bleeding, or with severe growth retardation or granulomatous disease of the large intestine. However, the actual disability caused by advanced schistosomiasis japonica is unknown. We carried out a patient-based quality-of-life evaluation employing a standardized and widely used questionnaire (known as “EQ-5D plus”), coupled with ultrasonography and laboratory tests on advanced schistosomiasis japonica cases in a hyperendemic area of China. Among 215 confirmed cases of advanced schistosomiasis japonica, we found an overall disability weight of 0.447 with age-specific weights ranging from 0.378 to 0.510. Importantly, advanced schistosomiasis japonica is not only associated with heavy disability weights, but also with high morbidity and poor self-reported quality of life. Our results provide valuable data for the current revision of the Global Burden of Disease (GBD) study, as well as for evidence-based decision-making in China's national schistosomiasis control program

    Biological Stoichiometry in Human Cancer

    Get PDF
    A growing tumor in the body can be considered a complex ecological and evolutionary system. A new eco-evolutionary hypothesis (the "Growth Rate Hypothesis", GRH) proposes that tumors have elevated phosphorus (P) demands due to increased allocation to P-rich nucleic acids, especially ribosomal RNA, to meet the protein synthesis demands of accelerated proliferation.We determined the elemental (C, N, P) and nucleic acid contents of paired malignant and normal tissues from colon, lung, liver, or kidney for 121 patients. Consistent with the GRH, lung and colon tumors were significantly higher (by approximately two-fold) in P content (fraction of dry weight) and RNA content and lower in nitrogen (N):P ratio than paired normal tissue, and P in RNA contributed a significantly larger fraction of total biomass P in malignant relative to normal tissues. Furthermore, patient-specific differences for %P between malignant and normal tissues were positively correlated with such differences for %RNA, both for the overall data and within three of the four organ sites. However, significant differences in %P and %RNA between malignant and normal tissues were not seen in liver and kidney and, overall, RNA contributed only approximately 11% of total tissue P content.Data for lung and colon tumors provide support for the GRH in human cancer. The two-fold amplification of P content in colon and lung tumors may set the stage for potential P-limitation of their proliferation, as such differences often do for rapidly growing biota in ecosystems. However, data for kidney and liver do not support the GRH. To account for these conflicting observations, we suggest that local environments in some organs select for neoplastic cells bearing mutations increasing cell division rate ("r-selected," as in colon and lung) while conditions elsewhere may select for reduced mortality rate ("K-selected," as in liver and kidney)

    Facile solution-phase synthesis of γ-Mn3O4 hierarchical structures

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A lot of effort has been focused on the integration of nanorods/nanowire as building blocks into three-dimensional (3D) complex superstructures. But, the development of simple and effective methods for creating novel assemblies of self-supported patterns of hierarchical architectures to designed materials using a suitable chemical method is important to technology and remains an attractive, but elusive goal.</p> <p>Results</p> <p>The hierarchical structure of Mn<sub>3</sub>O<sub>4 </sub>with radiated spherulitic nanorods was prepared via a simple solution-based coordinated route in the presence of macrocycle polyamine, hexamethyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene (CT) with the assistance of thiourea as an additive.</p> <p>Conclusion</p> <p>This approach opens a new and facile route for the morphogenesis of Mn<sub>3</sub>O<sub>4 </sub>material and it might be extended as a novel synthetic method for the synthesis of other inorganic semiconducting nanomaterials such as metal chalcogenide semiconductors with novel morphology and complex form, since it has been shown that thiourea can be used as an effective additive and the number of such water-soluble macrocyclic polyamines also makes it possible to provide various kinds of ligands for different metals in homogeneous water system.</p

    Effective Rheology of Bubbles Moving in a Capillary Tube

    Full text link
    We calculate the average volumetric flux versus pressure drop of bubbles moving in a single capillary tube with varying diameter, finding a square-root relation from mapping the flow equations onto that of a driven overdamped pendulum. The calculation is based on a derivation of the equation of motion of a bubble train from considering the capillary forces and the entropy production associated with the viscous flow. We also calculate the configurational probability of the positions of the bubbles.Comment: 4 pages, 1 figur

    Withanolides-Induced Breast Cancer Cell Death Is Correlated with Their Ability to Inhibit Heat Protein 90

    Get PDF
    Withanolides are a large group of steroidal lactones found in Solanaceae plants that exhibit potential anticancer activities. We have previously demonstrated that a withanolide, tubocapsenolide A, induced cycle arrest and apoptosis in human breast cancer cells, which was associated with the inhibition of heat shock protein 90 (Hsp90). To investigate whether other withanolides are also capable of inhibiting Hsp90 and to analyze the structure-activity relationships, nine withanolides with different structural properties were tested in human breast cancer cells MDA-MB-231 and MCF-7 in the present study. Our data show that the 2,3-unsaturated double bond-containing withanolides inhibited Hsp90 function, as evidenced by selective depletion of Hsp90 client proteins and induction of Hsp70. The inhibitory effect of the withanolides on Hsp90 chaperone activity was further confirmed using in vivo heat shock luciferase activity recovery assays. Importantly, Hsp90 inhibition by the withanolides was correlated with their ability to induce cancer cell death. In addition, the withanolides reduced constitutive NF-κB activation by depleting IκB kinase complex (IKK) through inhibition of Hsp90. In estrogen receptor (ER)-positive MCF-7 cells, the withanolides also reduced the expression of ER, and this may be partly due to Hsp90 inhibition. Taken together, our results suggest that Hsp90 inhibition is a general feature of cytotoxic withanolides and plays an important role in their anticancer activity

    Biology of archaea from a novel family Cuniculiplasmataceae (Thermoplasmata) ubiquitous in hyperacidic environments

    Get PDF
    The order Thermoplasmatales (Euryarchaeota) is represented by the most acidophilic organisms known so far that are poorly amenable to cultivation. Earlier culture-independent studies in Iron Mountain (California) pointed at an abundant archaeal group, dubbed 'G-plasma'. We examined the genomes and physiology of two cultured representatives of a Family Cuniculiplasmataceae, recently isolated from acidic (pH 1-1.5) sites in Spain and UK that are 16S rRNA gene sequence-identical with 'G-plasma'. Organisms had largest genomes among Thermoplasmatales (1.87-1.94 Mbp), that shared 98.7-98.8% average nucleotide identities between themselves and 'G-plasma' and exhibited a high genome conservation even within their genomic islands, despite their remote geographical localisations. Facultatively anaerobic heterotrophs, they possess an ancestral form of A-type terminal oxygen reductase from a distinct parental clade. The lack of complete pathways for biosynthesis of histidine, valine, leucine, isoleucine, lysine and proline pre-determines the reliance on external sources of amino acids and hence the lifestyle of these organisms as scavengers of proteinaceous compounds from surrounding microbial community members. In contrast to earlier metagenomics-based assumptions, isolates were S-layer-deficient, non-motile, non-methylotrophic and devoid of iron-oxidation despite the abundance of methylotrophy substrates and ferrous iron in situ, which underlines the essentiality of experimental validation of bioinformatic predictions

    Biological effects of naturally occurring and man-made fibres: in vitro cytotoxicity and mutagenesis in mammalian cells

    Get PDF
    Cytotoxicity and mutagenicity of tremolite, erionite and the man-made ceramic (RCF-1) fibre were studied using the human– hamster hybrid A L cells. Results from these fibres were compared with those of UICC Rhodesian chrysotile fibres. The A L cell mutation assay, based on the S1 gene marker located on human chromosome 11, the only human chromosome contained in the hybrid cell, has been shown to be more sensitive than conventional assays in detecting deletion mutations. Tremolite, erionite and RCF-1 fibres were significantly less cytotoxic to A L cells than chrysotile. Mutagenesis studies at the HPRT locus revealed no significant mutant yield with any of these fibres. In contrast, both erionite and tremolite induced dose-dependent S1− mutations in fibre-exposed cells, with the former inducing a significantly higher mutant yield than the latter fibre type. On the other hand, RCF-1 fibres were largely non-mutagenic. At equitoxic doses (cell survival at ∼ 0.7), erionite was found to be the most potent mutagen among the three fibres tested and at a level comparable to that of chrysotile fibres. These results indicate that RCF-1 fibres are non-genotoxic under the conditions used in the studies and suggest that the high mesothelioma incidence previously observed in hamster may either be a result of selective sensitivity of hamster pleura to fibre-induced chronic irritation or as a result of prolonged fibre treatment. Furthermore, the relatively high mutagenic potential for erionite is consistent with its documented carcinogenicity. © 1999 Cancer Research Campaig
    corecore