1,392 research outputs found

    A new model for comprehensive service-Learning : a case study in Long-chi Village

    Get PDF
    Version of RecordPublishe

    Anisotropic step-flow growth and island growth of GaN(0001) by molecular beam epitaxy

    Get PDF
    GaN(0001) thin films are grown using radio frequency plasma assisted molecular beam epitaxy. By changing the growth temperature, anisotropic growth rate behavior is observed in both the step-flow growth mode and the 2D island growth mode. Tunneling scanning microscopy reveals, in the step-flow growth mode, strong influences from the growth anisotropy on the shape of the terrace edges, resulting in striking differences between hexagonal and cubic films. In the 2D nucleation growth mode, triangularly shaped islands are formed. The significance of growth anisotropy to growing high quality GaN films is discussed.published_or_final_versio

    Human motion tracking based on complementary Kalman filter

    Get PDF
    Miniaturized Inertial Measurement Unit (IMU) has been widely used in many motion capturing applications. In order to overcome stability and noise problems of IMU, a lot of efforts have been made to develop appropriate data fusion method to obtain reliable orientation estimation from IMU data. This article presents a method which models the errors of orientation, gyroscope bias and magnetic disturbance, and compensate the errors of state variables with complementary Kalman filter in a body motion capture system. Experimental results have shown that the proposed method significantly reduces the accumulative orientation estimation errors

    Inferring Unusual Crowd Events From Mobile Phone Call Detail Records

    Full text link
    The pervasiveness and availability of mobile phone data offer the opportunity of discovering usable knowledge about crowd behaviors in urban environments. Cities can leverage such knowledge in order to provide better services (e.g., public transport planning, optimized resource allocation) and safer cities. Call Detail Record (CDR) data represents a practical data source to detect and monitor unusual events considering the high level of mobile phone penetration, compared with GPS equipped and open devices. In this paper, we provide a methodology that is able to detect unusual events from CDR data that typically has low accuracy in terms of space and time resolution. Moreover, we introduce a concept of unusual event that involves a large amount of people who expose an unusual mobility behavior. Our careful consideration of the issues that come from coarse-grained CDR data ultimately leads to a completely general framework that can detect unusual crowd events from CDR data effectively and efficiently. Through extensive experiments on real-world CDR data for a large city in Africa, we demonstrate that our method can detect unusual events with 16% higher recall and over 10 times higher precision, compared to state-of-the-art methods. We implement a visual analytics prototype system to help end users analyze detected unusual crowd events to best suit different application scenarios. To the best of our knowledge, this is the first work on the detection of unusual events from CDR data with considerations of its temporal and spatial sparseness and distinction between user unusual activities and daily routines.Comment: 18 pages, 6 figure

    Direct observation of a Ga adlayer on a GaN(0001) surface by LEED Patterson inversion

    Get PDF
    A low-energy electron diffraction (LEED) Patterson function (PF) with multiple incident angles is used to obtain three-dimensional interatomic information of hexagonal GaN(0001) grown on a 6H-SiC(0001)-√3 x √3 surface. A Ga-Ga atomic pair between the Ga adlayer and the terminating Ga layer is observed in the LEED PF. This provides direct experimental evidence to support the structural model proposed by first-principles calculations. The LEED PF also shows that the GaN film has a hexagonal structure and the surface has single-bilayer steps.published_or_final_versio

    Step bunching of vicinal GaN(0001) surfaces during molecular beam epitaxy

    Get PDF
    Step bunching of vicinal GaN(0001) surface during epitaxial growth is observed by scanning tunneling microscopy. Large step stiffness and repulsive step-step interaction are suggested based on step morphology observations. The size of the bunch changes with time, depending on the direction in which the substrate is heated by a direct current. This observation provides evidence for the electromigration effect causing the step bunching, and from the field dependence we infer that adatoms, which are likely N, have effective positive charges. ©2000 The American Physical Society.published_or_final_versio

    Reduction of threading defects in GaN grown on vicinal SiC(0001) by molecular-beam epitaxy

    Get PDF
    We observe a significant reduction of threading dislocations in GaN grown on vicinal substrates of SiC(0001). Using scanning tunneling microscopy, we find films grown on vicinal substrates maintain the surface misorientation of the substrate and display terraces with straight edges. On top of the terraces there is no spiral mound, which is the main feature found for films grown on singular substrates. Transmission electron microscopy studies confirm that threading screw dislocations are reduced by two orders of magnitude while edge dislocations are reduced by one order. © 2000 American Institute of Physics.published_or_final_versio

    Native donors and compensation in Fe-doped liquid encapsulated Czochralski InP

    Get PDF
    Undoped and Fe-doped liquid encapsulated Czochralski (LEC) InP has been studied by Hall effect, current-voltage (I-V), and infrared absorption (IR) spectroscopy. The results indicate that a native hydrogen vacancy complex donor defect exists in as-grown LEC InP. By studying the IR results, it is found that the concentration of this donor defect in Fe-doped InP is much higher than that in undoped InP. This result is consistent with the observation that a much higher concentration of Fe 2+ than the apparent net donor concentration is needed to achieve the semi-insulating (SI) property in InP. By studying the I-V and IR results of Fe-doped InP wafers sliced from different positions on an ingot, the high concentration of Fe 2+ is found to correlate with the existence of this hydrogen complex. The concentration of this donor defect is high in wafers from the top of an ingot. Correspondingly, a higher concentration of Fe 2+ can be detected in these wafers. These results reveal the influence of the complex defect on the compensation and uniformity of Fe-doped SI InP materials. © 2001 American Institute of Physics.published_or_final_versio
    corecore