206 research outputs found

    Corticomuscular coherence analysis on the static and dynamic tasks of hand movement

    Get PDF
    The synchronization between cortical motor and muscular activity can be revealed by corticomuscular coherence (CMC). This paper designed two neuromuscular activity paradigms of hand movement, i.e. static gripping task and dynamic finger moving task. The electroencephalography (EEG) from C3 and C4 channels and the surface electromyography (sEMG) from the flexor digitorum superficialis were collected simultaneously from 4 male and 4 female right-handed healthy young subjects. For the static griping task, CMCs during low-level forces under 4%, 8%, and 16% MVC (Maximal Voluntary Contraction) were investigated by using magnitude squared coherence calculated from EEGs and sEMGs. For the dynamic finger moving task, the time-frequency domain analysis was used to process dynamic data of temporary action in a period of 2 seconds and get the latency of the maximum CMC. The results of this study indicated that the force increasing within the low-level range in static task is associated with the enhanced CMC. The maximum amplitude of CMC occurred about 0.3–0.5s after the onset of hand movement. Subjects showed significant CMC performance both in static and dynamic task of hand movement.published_or_final_versio

    A simulation study for comparing testing statistics in response-adaptive randomization

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Response-adaptive randomizations are able to assign more patients in a comparative clinical trial to the tentatively better treatment. However, due to the adaptation in patient allocation, the samples to be compared are no longer independent. At large sample sizes, many asymptotic properties of test statistics derived for independent sample comparison are still applicable in adaptive randomization provided that the patient allocation ratio converges to an appropriate target asymptotically. However, the small sample properties of commonly used test statistics in response-adaptive randomization are not fully studied.</p> <p>Methods</p> <p>Simulations are systematically conducted to characterize the statistical properties of eight test statistics in six response-adaptive randomization methods at six allocation targets with sample sizes ranging from 20 to 200. Since adaptive randomization is usually not recommended for sample size less than 30, the present paper focuses on the case with a sample of 30 to give general recommendations with regard to test statistics for contingency tables in response-adaptive randomization at small sample sizes.</p> <p>Results</p> <p>Among all asymptotic test statistics, the Cook's correction to chi-square test (<it>T</it><sub><it>MC</it></sub>) is the best in attaining the nominal size of hypothesis test. The William's correction to log-likelihood ratio test (<it>T</it><sub><it>ML</it></sub>) gives slightly inflated type I error and higher power as compared with <it>T</it><sub><it>MC</it></sub>, but it is more robust against the unbalance in patient allocation. <it>T</it><sub><it>MC </it></sub>and <it>T</it><sub><it>ML </it></sub>are usually the two test statistics with the highest power in different simulation scenarios. When focusing on <it>T</it><sub><it>MC </it></sub>and <it>T</it><sub><it>ML</it></sub>, the generalized drop-the-loser urn (GDL) and sequential estimation-adjusted urn (SEU) have the best ability to attain the correct size of hypothesis test respectively. Among all sequential methods that can target different allocation ratios, GDL has the lowest variation and the highest overall power at all allocation ratios. The performance of different adaptive randomization methods and test statistics also depends on allocation targets. At the limiting allocation ratio of drop-the-loser (DL) and randomized play-the-winner (RPW) urn, DL outperforms all other methods including GDL. When comparing the power of test statistics in the same randomization method but at different allocation targets, the powers of log-likelihood-ratio, log-relative-risk, log-odds-ratio, Wald-type Z, and chi-square test statistics are maximized at their corresponding optimal allocation ratios for power. Except for the optimal allocation target for log-relative-risk, the other four optimal targets could assign more patients to the worse arm in some simulation scenarios. Another optimal allocation target, <it>R</it><sub><it>RSIHR</it></sub>, proposed by Rosenberger and Sriram (<it>Journal of Statistical Planning and Inference</it>, 1997) is aimed at minimizing the number of failures at fixed power using Wald-type Z test statistics. Among allocation ratios that always assign more patients to the better treatment, <it>R</it><sub><it>RSIHR </it></sub>usually has less variation in patient allocation, and the values of variation are consistent across all simulation scenarios. Additionally, the patient allocation at <it>R</it><sub><it>RSIHR </it></sub>is not too extreme. Therefore, <it>R</it><sub><it>RSIHR </it></sub>provides a good balance between assigning more patients to the better treatment and maintaining the overall power.</p> <p>Conclusion</p> <p>The Cook's correction to chi-square test and Williams' correction to log-likelihood-ratio test are generally recommended for hypothesis test in response-adaptive randomization, especially when sample sizes are small. The generalized drop-the-loser urn design is the recommended method for its good overall properties. Also recommended is the use of the <it>R</it><sub><it>RSIHR </it></sub>allocation target.</p

    MicroRNA-21 regulates breast cancer invasion partly by targeting tissue inhibitor of metalloproteinase 3 expression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNAs are non-coding RNA molecules that posttranscriptionally regulate expression of target genes and have been implicated in the progress of cancer proliferation, differentiation and apoptosis. The aim of this study was to determine whether microRNA-21 (miR-21), a specific microRNA implicated in multiple aspects of carcinogenesis, impacts breast cancer invasion by regulating the tissue inhibitor of metalloproteinase 3 (TIMP3) gene.</p> <p>Methods</p> <p>miR-21 expression was investigated in 32 matched breast cancer and normal breast tissues, and in four human breast cancer cell lines, by Taqman quantitative real-time PCR. Cell invasive ability was determined by matrigel invasion assay in vitro, in cells transfected with miR-21 or anti-miR-21 oligonucleotides. In addition, the regulation of tissue inhibitor of metalloproteinase 3 (TIMP3) by miR-21 was evaluated by western blotting and luciferase assays.</p> <p>Results</p> <p>Of the 32 paired samples analyzed, 25 breast cancer tissues displayed overexpression of miR-21 in comparison with matched normal breast epithelium. Additionally, incidence of lymph node metastasis closely correlated with miR-21 expression, suggesting a role for miR-21 in metastasis. Similarly, each of the four breast cancer cell lines analyzed overexpressed miR-21, to varied levels. Further, cells transfected with miR-21 showed significantly increased matrigel invasion compared with control cells, whereas transfection with anti-miR-21 significantly decreased cell invasion. Evaluation of TIMP3 protein levels, a peptidase involved in extarcellular matrix degredation, inversely correlated with miR-21 expression.</p> <p>Conclusion</p> <p>As knockdown of miR-21 increased TIMP3 protein expression and luciferase reporter activity, our data suggests that miR-21 could promote invasion in breast cancer cells via its regulation of TIMP3.</p

    Comparative Analysis of Gene Content Evolution in Phytoplasmas and Mycoplasmas

    Get PDF
    Phytoplasmas and mycoplasmas are two groups of important pathogens in the bacterial class Mollicutes. Because of their economical and clinical importance, these obligate pathogens have attracted much research attention. However, difficulties involved in the empirical study of these bacteria, particularly the fact that phytoplasmas have not yet been successfully cultivated outside of their hosts despite decades of attempts, have greatly hampered research progress. With the rapid advancements in genome sequencing, comparative genome analysis provides a new approach to facilitate our understanding of these bacteria. In this study, our main focus is to investigate the evolution of gene content in phytoplasmas, mycoplasmas, and their common ancestor. By using a phylogenetic framework for comparative analysis of 12 complete genome sequences, we characterized the putative gains and losses of genes in these obligate parasites. Our results demonstrated that the degradation of metabolic capacities in these bacteria has occurred predominantly in the common ancestor of Mollicutes, prior to the evolutionary split of phytoplasmas and mycoplasmas. Furthermore, we identified a list of genes that are acquired by the common ancestor of phytoplasmas and are conserved across all strains with complete genome sequences available. These genes include several putative effectors for the interactions with hosts and may be good candidates for future functional characterization

    Association of Glomerular Filtration Rate with High-Sensitivity Cardiac Troponin T in a Community-Based Population Study in Beijing

    Get PDF
    BACKGROUND: Reduced renal function is an independent risk factor for cardiovascular disease mortality, and persistently elevated cardiac troponin T (cTnT) is frequently observed in patients with end-stage renal disease. In the general population the relationship between renal function and cTnT levels may not be clear because of the low sensitivity of the assay. In this study, we investigated the level of cTnT using a highly sensitive assay (hs-cTnT) and evaluated the association of estimated glomerular filtration rate (eGFR) with detectable hs-cTnT levels in a community-based population. METHODS: The serum hs-cTnT levels were measured in 1365 community dwelling population aged ≥45 years in Beijing, China. eGFR was determined by the Chinese modifying modification of diet in renal disease (C-MDRD) equation. RESULTS: With the highly sensitive assay, cTnT levels were detectable (≥3pg/mL) in 744 subjects (54.5%). The result showed that eGFR was associated with Log hs-cTnT (r = -0.14, P<0.001). After adjustment for the high predicted Framingham Coronary Heart Disease (CHD) risk (10-year risk >20%) and other prognostic indicators, moderate to severe reduced eGFR was independently associated with detectable hs-cTnT, whereas normal to mildly reduced eGFR was not independently associated with detectable hs-cTnT. In addition, after adjustment for other risk factors, the high predicted Framingham CHD risk was associated with detectable hs-cTnT in the subjects with different quartile levels of eGFR. CONCLUSION: The levels of hs-cTnT are detectable in a community-based Chinese population and low eGFR is associated with detectable hs-cTnT. Moreover, eGFR and high predicted Framingham CHD risk are associated with detectable hs-cTnT in subjects with moderate-to-severe reduced renal function

    Antimetastatic gene expression profiles mediated by retinoic acid receptor beta 2 in MDA-MB-435 breast cancer cells

    Get PDF
    BACKGROUND: The retinoic acid receptor beta 2 (RARβ2) gene modulates proliferation and survival of cultured human breast cancer cells. Previously we showed that ectopic expression of RARβ2 in a mouse xenograft model prevented metastasis, even in the absence of the ligand, all-trans retinoic acid. We investigated both cultured cells and xenograft tumors in order to delineate the gene expression profiles responsible for an antimetastatic phenotype. METHODS: RNA from MDA-MB-435 human breast cancer cells transduced with RARβ2 or empty retroviral vector (LXSN) was analyzed using Agilent Human 1A Oligo microarrays. The one hundred probes with the greatest differential intensity (p < 0.004, jointly) were determined by selecting the top median log ratios from eight-paired microarrays. Validation of differences in expression was done using Northern blot analysis and quantitative RT-PCR (qRT-PCR). We determined expression of selected genes in xenograft tumors. RESULTS: RARβ2 cells exhibit gene profiles with overrepresentation of genes from Xq28 (p = 2 × 10(-8)), a cytogenetic region that contains a large portion of the cancer/testis antigen gene family. Other functions or factors impacted by the presence of exogenous RARβ2 include mediators of the immune response and transcriptional regulatory mechanisms. Thirteen of fifteen (87%) of the genes evaluated in xenograft tumors were consistent with differences we found in the cell cultures (p = 0.007). CONCLUSION: Antimetastatic RARβ2 signalling, direct or indirect, results in an elevation of expression for genes such as tumor-cell antigens (CTAG1 and CTAG2), those involved in innate immune response (e.g., RIG-I/DDX58), and tumor suppressor functions (e.g., TYRP1). Genes whose expression is diminished by RARβ2 signalling include cell adhesion functions (e.g, CD164) nutritional or metabolic processes (e.g., FABP6), and the transcription factor, JUN
    corecore