27 research outputs found

    An integrated national scale SARS-CoV-2 genomic surveillance network

    Get PDF

    Artifacts Found During Quality Assurance Testing of Computed Radiography and Digital Radiography Detectors

    No full text
    A series of artifact images, obtained over 5 years of performance testing, of both computed radiography (CR) and integrated digital radiographic X-ray imaging detectors are presented. The images presented are all either flat field or test object images and show artifacts previously either undescribed in the existing literature or meriting further comment. The artifacts described are caused by incorrect flat field corrections, a failing amplifier, damaged detector lines affecting their neighbors, lost information between neighboring detector tiles, image retention, delamination of a detector, poor setup of mechanical movements in CR, suckers damaging a CR plate, inappropriate use of grid suppression software, inappropriate use of a low pass spatial frequency filter, and unsharp masking filters. The causes and significance of the artifacts are explained and categorized as software or hardware related. Actions taken to correct the artifacts are described and explained. This work will help physicists, radiographers, and radiologists identify various image quality problems and shows that quality assurance is useful in identifying artifacts

    Comparative genomics as a foundation for evo-devo studies in birds

    No full text
    © Springer Science+Business Media LLC 2017. Developmental genomics is a rapidly growing field, and high-quality genomes are a useful foundation for comparative developmental studies. A high-quality genome forms an essential reference onto which the data from numerous assays and experiments, including ChIP-seq, ATAC-seq, and RNA-seq, can be mapped. A genome also streamlines and simplifies the development of primers used to amplify putative regulatory regions for enhancer screens, cDNA probes for in situ hybridization, microRNAs (miRNAs) or short hairpin RNAs (shRNA) for RNA interference (RNAi) knockdowns, mRNAs for misexpression studies, and even guide RNAs (gRNAs) for CRISPR knockouts. Finally, much can be gleaned from comparative genomics alone, including the identification of highly conserved putative regulatory regions. This chapter provides an overview of laboratory and bioinformatics protocols for DNA extraction, library preparation, library quantification, and genome assembly, from fresh or frozen tissue to a draft avian genome. Generating a high-quality draft genome can provide a developmental research group with excellent resources for their study organism, opening the doors to many additional assays and experiments.Link_to_subscribed_fulltex

    Conformational characteristics of the interaction of SR141716A with the CB1 cannabinoid receptor as determined through the use of conformationally constrained analogs

    No full text
    Interest in cannabinoid pharmacology increased dramatically upon the identification of the first cannabinoid receptor (CB1) in 1998 and continues to expand as additional endocannabinoids and cannabinoid receptors are discovered. Using CB1 receptor (CB1R) systems, medicinal chemistry programs began screening libraries searching for cannabinoid ligands, ultimately leading to the discovery of the first potent cannabinoid receptor antagonist, SR141716A (Rimonabant). Its demonstrated efficacy in treating obesity and facilitating smoking cessation, among other impressive pharmacological activities, has furthered the interest in cannabinoid receptor antagonists as therapeutics, such that the number of patents and publications covering this class of compounds continues to grow at an impressive rate. At this time, medicinal chemistry approaches including combinatorial chemistry, conformational constraint, and scaffold hopping are continuing to generate a large number of cannabinoid antagonists. These molecules provide an opportunity to gain insight into the 3-dimensional structure-activity relationships that appear crucial for CB1R-ligand interaction. In particular, studies in which conformational constraints have been imposed on the various pyrazole ring substituents of SR141716A provide a direct opportunity to characterize changes in conformation/conformational freedom within a single class of compounds. While relatively few conformationally constrained molecules have been synthesized to date, the structure-activity information is often more readily interpreted than in studies where entire substituents are replaced. Thus, it is the focus of this mini-review to examine the structural properties of SR141716A, and to use conformationally constrained molecules to illustrate the importance of conformation and conformational freedom to CB1R affinity, selectivity, and efficacy
    corecore