612 research outputs found

    A sense of embodiment is reflected in people's signature size

    Get PDF
    BACKGROUND: The size of a person's signature may reveal implicit information about how the self is perceived although this has not been closely examined. METHODS/RESULTS: We conducted three experiments to test whether increases in signature size can be induced. Specifically, the aim of these experiments was to test whether changes in signature size reflect a person's current implicit sense of embodiment. Experiment 1 showed that an implicit affect task (positive subliminal evaluative conditioning) led to increases in signature size relative to an affectively neutral task, showing that implicit affective cues alter signature size. Experiments 2 and 3 demonstrated increases in signature size following experiential self-focus on sensory and affective stimuli relative to both conceptual self-focus and external (non-self-focus) in both healthy participants and patients with anorexia nervosa, a disorder associated with self-evaluation and a sense of disembodiment. In all three experiments, increases in signature size were unrelated to changes in self-reported mood and larger than manipulation unrelated variations. CONCLUSIONS: Together, these findings suggest that a person's sense of embodiment is reflected in their signature size

    Improving the Efficiency of Physical Examination Services

    Get PDF
    The objective of our project was to improve the efficiency of the physical examination screening service of a large hospital system. We began with a detailed simulation model to explore the relationships between four performance measures and three decision factors. We then attempted to identify the optimal physician inquiry starting time by solving a goal-programming problem, where the objective function includes multiple goals. One of our simulation results shows that the proposed optimal physician inquiry starting time decreased patient wait times by 50% without increasing overall physician utilization

    Learning genetic epistasis using Bayesian network scoring criteria

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gene-gene epistatic interactions likely play an important role in the genetic basis of many common diseases. Recently, machine-learning and data mining methods have been developed for learning epistatic relationships from data. A well-known combinatorial method that has been successfully applied for detecting epistasis is <it>Multifactor Dimensionality Reduction </it>(MDR). Jiang et al. created a combinatorial epistasis learning method called <it>BNMBL </it>to learn Bayesian network (BN) epistatic models. They compared BNMBL to MDR using simulated data sets. Each of these data sets was generated from a model that associates two SNPs with a disease and includes 18 unrelated SNPs. For each data set, BNMBL and MDR were used to score all 2-SNP models, and BNMBL learned significantly more correct models. In real data sets, we ordinarily do not know the number of SNPs that influence phenotype. BNMBL may not perform as well if we also scored models containing more than two SNPs. Furthermore, a number of other BN scoring criteria have been developed. They may detect epistatic interactions even better than BNMBL.</p> <p>Although BNs are a promising tool for learning epistatic relationships from data, we cannot confidently use them in this domain until we determine which scoring criteria work best or even well when we try learning the correct model without knowledge of the number of SNPs in that model.</p> <p>Results</p> <p>We evaluated the performance of 22 BN scoring criteria using 28,000 simulated data sets and a real Alzheimer's GWAS data set. Our results were surprising in that the Bayesian scoring criterion with large values of a hyperparameter called α performed best. This score performed better than other BN scoring criteria and MDR at <it>recall </it>using simulated data sets, at detecting the hardest-to-detect models using simulated data sets, and at substantiating previous results using the real Alzheimer's data set.</p> <p>Conclusions</p> <p>We conclude that representing epistatic interactions using BN models and scoring them using a BN scoring criterion holds promise for identifying epistatic genetic variants in data. In particular, the Bayesian scoring criterion with large values of a hyperparameter α appears more promising than a number of alternatives.</p

    Automation of a problem list using natural language processing

    Get PDF
    BACKGROUND: The medical problem list is an important part of the electronic medical record in development in our institution. To serve the functions it is designed for, the problem list has to be as accurate and timely as possible. However, the current problem list is usually incomplete and inaccurate, and is often totally unused. To alleviate this issue, we are building an environment where the problem list can be easily and effectively maintained. METHODS: For this project, 80 medical problems were selected for their frequency of use in our future clinical field of evaluation (cardiovascular). We have developed an Automated Problem List system composed of two main components: a background and a foreground application. The background application uses Natural Language Processing (NLP) to harvest potential problem list entries from the list of 80 targeted problems detected in the multiple free-text electronic documents available in our electronic medical record. These proposed medical problems drive the foreground application designed for management of the problem list. Within this application, the extracted problems are proposed to the physicians for addition to the official problem list. RESULTS: The set of 80 targeted medical problems selected for this project covered about 5% of all possible diagnoses coded in ICD-9-CM in our study population (cardiovascular adult inpatients), but about 64% of all instances of these coded diagnoses. The system contains algorithms to detect first document sections, then sentences within these sections, and finally potential problems within the sentences. The initial evaluation of the section and sentence detection algorithms demonstrated a sensitivity and positive predictive value of 100% when detecting sections, and a sensitivity of 89% and a positive predictive value of 94% when detecting sentences. CONCLUSION: The global aim of our project is to automate the process of creating and maintaining a problem list for hospitalized patients and thereby help to guarantee the timeliness, accuracy and completeness of this information

    Phenotypic Variation and Bistable Switching in Bacteria

    Get PDF
    Microbial research generally focuses on clonal populations. However, bacterial cells with identical genotypes frequently display different phenotypes under identical conditions. This microbial cell individuality is receiving increasing attention in the literature because of its impact on cellular differentiation, survival under selective conditions, and the interaction of pathogens with their hosts. It is becoming clear that stochasticity in gene expression in conjunction with the architecture of the gene network that underlies the cellular processes can generate phenotypic variation. An important regulatory mechanism is the so-called positive feedback, in which a system reinforces its own response, for instance by stimulating the production of an activator. Bistability is an interesting and relevant phenomenon, in which two distinct subpopulations of cells showing discrete levels of gene expression coexist in a single culture. In this chapter, we address techniques and approaches used to establish phenotypic variation, and relate three well-characterized examples of bistability to the molecular mechanisms that govern these processes, with a focus on positive feedback.
    corecore