117 research outputs found

    The spectral properties of the magnetic polarizability tensor for metallic object characterisation

    Get PDF
    The measurement of time‐harmonic perturbed field data, at a range of frequencies, is beneficial for practical metal detection, where the goal is to locate and identify hidden targets. In particular, these benefits are realised when frequency‐dependent magnetic polarizability tensors (MPTs) are used to provide an economical characterisation of conducting permeable objects, and a dictionary‐based classifier is employed. However, despite the advantages shown in dictionary‐based classifiers, the behaviour of the MPT coefficients with frequency is not properly understood. In this paper, we rigorously analyse, for the first time, the spectral properties of the coefficients of the MPT. This analysis has the potential to improve existing algorithms and design new approaches for object location and identification in metal detection. Our analysis also enables the response transient response from a conducting permeable object to be predicted for more general forms of excitation

    Physics in Riemann's mathematical papers

    Full text link
    Riemann's mathematical papers contain many ideas that arise from physics, and some of them are motivated by problems from physics. In fact, it is not easy to separate Riemann's ideas in mathematics from those in physics. Furthermore, Riemann's philosophical ideas are often in the background of his work on science. The aim of this chapter is to give an overview of Riemann's mathematical results based on physical reasoning or motivated by physics. We also elaborate on the relation with philosophy. While we discuss some of Riemann's philosophical points of view, we review some ideas on the same subjects emitted by Riemann's predecessors, and in particular Greek philosophers, mainly the pre-socratics and Aristotle. The final version of this paper will appear in the book: From Riemann to differential geometry and relativity (L. Ji, A. Papadopoulos and S. Yamada, ed.) Berlin: Springer, 2017

    Looking backward: From Euler to Riemann

    Full text link
    We survey the main ideas in the early history of the subjects on which Riemann worked and that led to some of his most important discoveries. The subjects discussed include the theory of functions of a complex variable, elliptic and Abelian integrals, the hypergeometric series, the zeta function, topology, differential geometry, integration, and the notion of space. We shall see that among Riemann's predecessors in all these fields, one name occupies a prominent place, this is Leonhard Euler. The final version of this paper will appear in the book \emph{From Riemann to differential geometry and relativity} (L. Ji, A. Papadopoulos and S. Yamada, ed.) Berlin: Springer, 2017

    REMOVABLE SETS FOR LIPSCHITZ HARMONIC FUNCTIONS ON CARNOT GROUPS

    Get PDF
    Abstract. Let G be a Carnot group with homogeneous dimension Q ≥ 3 and let L be a sub-Laplacian on G. We prove that the critical dimension for removable sets of Lipschitz L-harmonic functions is (Q − 1). Moreover we construct self-similar sets with positive and finite H Q−1 measure which are removable. 1

    A glimpse into Thurston's work

    Full text link
    We present an overview of some significant results of Thurston and their impact on mathematics. The final version of this paper will appear as Chapter 1 of the book "In the tradition of Thurston: Geometry and topology", edited by K. Ohshika and A. Papadopoulos (Springer, 2020)

    A note on the Königs domain of compact composition operators on the Bloch space

    Get PDF
    Let D be the unit disk in the complex plane. We define B0 to be the little Bloch space of functions f analytic in D which satisfy lim┬(|z|→1)⁡〖(1- |z|^2 )|f^' (z) |=0.〗 If φ:D→D is analytic then the composition operator C_φ:f→f∘φ is a continuous operator that maps B0 into itself. In this paper, we show that the compactness of C_φ, as and operator on B0, can be modelled geometrically by its principle eigenfunction. In particular, under certain necessary conditions, we relate the compactness of C_φto the geometry of Ω=σ(D) where σ satisfies Schroder’s functional equation σ∘φ=φ^' (0)σ
    corecore