36 research outputs found

    Weak Interaction Matrix Elements and (p,n) Cross Sections

    Get PDF
    This research was sponsored by the National Science Foundation Grant NSF PHY-931478

    Strongly correlated fermions with nonlinear energy dispersion and spontaneous generation of anisotropic phases

    Full text link
    Using the bosonization approach we study fermionic systems with a nonlinear dispersion relation in dimension d>2. We explicitly show how the band curvature gives rise to interaction terms in the bosonic version of the model. Although these terms are perturbatively irrelevant in relation to the Landau Fermi liquid fixed point, they become relevant perturbations when instabilities take place. Using a coherent state path integral technique we built up the effective action that governs the dynamics of the Fermi surface fluctuations. We consider the combined effect of fermionic interactions and band curvature on possible anisotropic phases triggered by negative Landau parameters. In particular we study in some detail the phase diagram for the isotropic/nematic/hexatic quantum phase transition.Comment: RevTeX4, 9 pages, 2 eps figures, Final version as appeared in Phys.Rev.

    Progress Report on E356

    Get PDF
    This research was sponsored by the National Science Foundation Grant NSF PHY-931478

    Effects of anisotropic spin-exchange interactions in spin ladders

    Full text link
    We investigate the effects of the Dzialoshinskii-Moriya (DM) and Kaplan-Shekhtman-Entin-Wohlman-Aharony (KSEA) interactions on various thermodynamic and magnetic properties of a spin 1/2 ladder. Using the Majorana fermion representation, we derive the spectrum of low energy excitations for a pure DM interaction and in presence of a superimposed KSEA interaction. We calculate the various correlation functions for both cases and discuss how they are modified with respect to the case of an isotropic ladder. We also discuss the electron spin resonance (ESR) spectrum of the system and show that it is strongly influenced by the orientation of the magnetic field with respect to the Dzialoshinskii-Moriya vector. Implications of our calculations for NMR and ESR experiments on ladder systems are discussed.Comment: 14 pages, 4 eps figures, corrected calculation of NMR rate (v3

    The Gamow-Teller Strength Function for 37-Cl → 37-Ar

    Get PDF
    This research was sponsored by the National Science Foundation Grant NSF PHY-931478

    Correlation Amplitudes for the spin-1/2 XXZ chain in a magnetic field

    Full text link
    We present accurate numerical estimates for the correlation amplitudes of leading and main subleading terms of the two- and four-spin correlation functions in the one-dimensional spin-1/2 XXZ model under a magnetic field. These data are obtained by fitting the correlation functions, computed numerically with the density-matrix renormalization-group method, to the corresponding correlation functions in the low-energy effective theory. For this purpose we have developed the Abelian bosonization approach to the spin chain under the open boundary conditions. We use the numerical data of the correlation amplitudes to quantitatively estimate spin gaps induced by a transverse staggered field and by exchange anisotropy.Comment: 18 pages, 6 figures, 1 tabl

    Jordan-Wigner approach to dynamic correlations in spin-ladders

    Full text link
    We present a method for studying the excitations of low-dimensional quantum spin systems based on the Jordan-Wigner transformation. Using an extended RPA-scheme we calculate the correlation function of neighboring spin flips which well approximates the optical conductivity of Sr2CuO3{\rm Sr_2CuO_3}. We extend this approach to the two-leg S=1/2S=1/2--ladder by numbering the spin operators in a meander-like sequence. We obtain good agreement with the optical conductivity of the spin ladder compound (La,Ca)14_{14}Cu24_{24}O41_{41} for polarization along the rungs. For polarization along the legs higher order correlations are important to explain the weight of high-energy continuum excitations and we estimate the contribution of 4-- and 6--fermion processes.Comment: 15 pages, 16 figure

    Phase diagrams of spin ladders with ferromagnetic legs

    Full text link
    The low-temperature properties of the spin S=1/2 ladder with anisotropic ferromagnetic legs are studied using the continuum limit bosonization approach. The weak-coupling ground state phase diagram of the model is obtained for a wide range of coupling constants and several unconventional gapless ''spin-liquid'' phases are shown to exist for ferromagnetic coupling. The behavior of the ladder system in the vicinity of the ferromagnetic instability point is discussed in detail.Comment: 11 pages, 4 figure
    corecore