28 research outputs found

    Podocarpaceae in tropical forests: A synthesis

    Get PDF
    The Podocarpaceae comprises 18 genera and about 173 species of evergreen, coniferous trees and shrubs. It is the most successful gymnosperm family in angiosperm-dominated tropical forests (Brodribb, this volume). Podocarps are distributed mainly in the Southern Hemisphere, with populations also extending as far north as China and Japan and to Mexico and the Caribbean in the neotropics (Dalling et al., this volume; Enright and Jaffré, this volume; Adie and Lawes, this volume)

    Energy content of stools in normal healthy controls and patients with cystic fibrosis

    No full text
    Stool energy losses and the sources of energy within the stool were determined in 20 healthy controls and 20 patients with cystic fibrosis while on their habitual pancreatic enzyme replacement treatment. Stool energy losses were equivalent to 3.5% of gross energy intake in healthy children (range 1.3-5.8%). Despite a comparable gross energy intake, stool energy losses were three times greater in patients with cystic fibrosis than controls averaging 10.6% of gross energy intake (range 4.9-19.7%). Stool lipid could account for only 29% and 41% of the energy within the stool in controls and patients with cystic fibrosis respectively and was poorly related to stool energy. Approximately 30% of the energy within the stool could be attributable to colonic bacteria in both the healthy children and patients with cystic fibrosis. These results suggest that stool energy losses in healthy children are relatively modest but that even when patients with cystic fibrosis are symptomatically well controlled on pancreatic enzyme replacement, raised stool energy losses may continue to contribute towards an energy deficit sufficient to limit growth in cystic fibrosis. As the energy content per gram wet weight remains relatively constant (8 kJ/g), stool energy losses may be estimated from simple measurements of stool wet weight

    Effect of prior austenite grain size on pearlite transformation in A hypoeuctectoid Fe-C-Mn steel

    No full text
    The aim of this work is to evaluate the influence of the prior austenite grain size (AGS) on the austenite-to-pearlite isothermal decomposition in a Fe-C-Mn hypoeutectoid steel. Due to the strong influence, grain boundaries have on pearlite transformation kinetics, morphological aspects of pearlite from two conditions with very different AGS were studied and characterized. Results allow us to conclude that the formation of pearlite and ferrite are favored for small AGS values, whereas a larger AGS led to an increase in the total amount of pearlite volume fraction. Furthermore, the average size of pearlitic colonies increased with increasing AGS, and it appears that the interlamellar spacing of the pearlite does not depend on AGS, but instead, is controlled by the isothermal decomposition temperature. Finally, it was observed that the ratio between lamellar thickness of ferrite and cementite depended on AGS.Peer Reviewe
    corecore