113 research outputs found

    In vitro resistance and evolution of resistance to tavaborole in Trichophyton rubrum

    Get PDF
    Tavaborole is currently used in the topical treatment of onychomycosis. In this study, we analyzed the in vitro emergence/evolution of resistance against tavaborole in Trichophyton rubrum When T. rubrum strains were propagated on media containing the MIC of tavaborole, spontaneous resistant mutants were isolated at a frequency of 10-8 The frequency was almost 100-fold higher following fungal growth in the presence of a sub-inhibitory tavaborole concentration (0.5-fold the MIC) for ten transfers. All collected mutants showed similar 4- to 8-fold increase in the drug minimal inhibitory concentration. No cross-resistance to other antifungals was evidenced

    Rapid and reliable identification of Gram-negative bacteria and Gram-positive cocci by deposition of bacteria harvested from blood cultures onto the MALDI-TOF plate

    Get PDF
    BACKGROUND: Rapid identification of the causative agent(s) of bloodstream infections using the matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) methodology can lead to increased empirical antimicrobial therapy appropriateness. Herein, we aimed at establishing an easier and simpler method, further referred to as the direct method, using bacteria harvested by serum separator tubes from positive blood cultures and placed onto the polished steel target plate for rapid identification by MALDI-TOF. The results by the direct method were compared with those obtained by MALDI-TOF on bacteria isolated on solid media. RESULTS: Identification of Gram-negative bacilli was 100 % concordant using the direct method or MALDI-TOF on isolated bacteria (96 % with score > 2.0). These two methods were 90 % concordant on Gram-positive cocci (32 % with score > 2.0). Identification by the SepsiTyper method of Gram-positive cocci gave concordant results with MALDI-TOF on isolated bacteria in 87 % of cases (37 % with score > 2.0). CONCLUSIONS: The direct method herein developed allows rapid identification (within 30 min) of Gram-negative bacteria and Gram-positive cocci from positive blood cultures and can be used to rapidly report reliable and accurate results, without requiring skilled personnel or the use of expensive kits

    Synergistic Activity of the Human Lactoferricin-Derived Peptide hLF1-11 in Combination with Caspofungin against Candida Species

    Get PDF
    The present study describes a synergistic effect between a conventional antifungal drug, caspofungin, and a synthetic peptide derived from human lactoferrin, hLF1-11, against Candida species. These yeasts are able to cause severe systemic fungal infections in immunocompromised hosts.Candida species are the main fungal opportunistic pathogens causing systemic infections that are often associated with drug resistance and biofilm production on medical devices. The pressing need for new antifungal agents led to an increased interest in the use of combination therapies. The present study was aimed at investigating potential synergistic activity of the human lactoferrin-derived hLF1-11 peptide with caspofungin against caspofungin-resistant or -susceptible C. albicans, C. parapsilosis, and C. glabrata strains. Synergism was evaluated by the checkerboard assay, measuring cellular metabolic activity against Candida planktonic and sessile cells. A fractional inhibitory concentration (FIC) index of <= 0.5 was interpreted as synergy. Synergism was evaluated by killing assays on planktonic cells. A cell viability assay was performed with biofilm formation inhibition and preformed biofilm. Synergy for killing and viability assays was defined as a >= 2-log-CFU/mL reduction in comparison with the most active constituent. hLF1-11 and caspofungin exerted (i) synergistic effects against planktonic cells of all the tested strains, yielding drastic caspofungin MIC reduction, (ii) synergistic effects on the inhibition of biofilm formation against biofilm producer strains, yielding caspofungin BIC reduction, and (iii) synergistic effects on preformed biofilm assessed by measuring metabolic activity (FIC range, 0.28 to 0.37) against biofilm-producing strains and by cell viability assay in C. albicans SC5314. The synergistic effect observed between caspofungin and hLF1-11 against Candida spp. is of potential clinical relevance, representing a promising novel approach to target caspofungin-resistant Candida species infections. Further studies elucidating the mechanisms of action of such a synergistic effect are needed. IMPORTANCE The present study describes a synergistic effect between a conventional antifungal drug, caspofungin, and a synthetic peptide derived from human lactoferrin, hLF1-11, against Candida species. These yeasts are able to cause severe systemic fungal infections in immunocompromised hosts. In addition, they can form biofilms in medical implanted devices. Recently, caspofungin-resistant Candida strains have emerged, thus highlighting the need to develop different therapeutic strategies. In in vitro studies, this drug combination is able to restore sensitivity to caspofungin in caspofungin-resistant strains of Candida species, both in free-living cells and in cells organized in biofilms. This synergism could represent a promising novel approach to target infections caused by caspofungin-resistant Candida species

    In vitro assessment of probiotic attributes for strains contained in commercial formulations

    Get PDF
    Although probiotics are often indiscriminately prescribed, they are not equal and their effects on the host may profoundly differ. In vitro determination of the attributes of probiotics should be a primary concern and be performed even before clinical studies are designed. In fact, knowledge on the biological properties a microbe possesses is crucial for selecting the most suitable bacteriotherapy for each individual. Herein, nine strains (Bacillus clausii NR, OC, SIN, T, Bacillus coagulans ATCC 7050, Bifidobacterium breve DSM 16604, Limosilactobacillus reuteri DSM 17938, Lacticaseibacillus rhamnosus ATCC 53103, and Saccharomyces boulardii CNCM I-745) declared to be contained in six commercial formulations were tested for their ability to tolerate simulated intestinal conditions, adhere to mucins, and produce β-galactosidase, antioxidant enzymes, riboflavin, and D-lactate. With the exception of B. breve, all microbes survived in simulated intestinal fluid. L. rhamnosus was unable to adhere to mucins and differences in mucin adhesion were evidenced for L. reuteri and S. boulardii depending on oxygen levels. All microorganisms produced antioxidant enzymes, but only B. clausii, B. coagulans, B. breve, and L. reuteri synthesize β-galactosidase. Riboflavin secretion was observed for Bacillus species and L. rhamnosus, while D-lactate production was restricted to L. reuteri and L. rhamnosus. Our findings indicate that the analyzed strains possess different in vitro biological properties, thus highlighting the usefulness of in vitro tests as prelude for clinical research

    Pushing the Limits of MALDI-TOF Mass Spectrometry: Beyond Fungal Species Identification

    Get PDF
    Matrix assisted laser desorption ionization time of flight (MALDI–TOF) is a powerful analytical tool that has revolutionized microbial identification. Routinely used for bacterial identification, MALDI-TOF has recently been applied to both yeast and filamentous fungi, confirming its pivotal role in the rapid and reliable diagnosis of infections. Subspecies-level identification holds an important role in epidemiological investigations aimed at tracing virulent or drug resistant clones. This review focuses on present and future applications of this versatile tool in the clinical mycology laboratory

    Diagnosis of bloodstream infections by mass spectrometry : present and future

    Get PDF
    Rapid identification and antimicrobial susceptibility testing of the causative agent(s) of bloodstream infections may impact on the clinical outcome of patients, which is directly related to the prompt administration of an effective antimicrobial therapy. Empirical antimicrobial therapy is chosen on the basis of clinical and epidemiological data and it is administered immediately after blood sampling but, in a significant number of cases, it has to be streamlined on the basis of the microbiological report. Rapid identification has a clinically relevant impact on the timely selection of an appropriate antimicrobial therapy, especially in low-prevalence areas for antimicrobial resistance. Recently, the identification process of isolated bacteria has been revolutionized by the introduction of mass spectrometry (MS), particularly MALDI-TOF, in clinical microbiology laboratories. Furthermore, MALDI-TOF is one of the most promising techniques for the identification of bacterial and fungal infectious agents directly from positive blood cultures and a potentially useful tool for the detection of antimicrobial resistance, specifically that conferred by -lactamases. Although blood culture remains, at present, the gold standard to diagnose bloodstream infections, newly developed MALDI-TOF methods are useful adjunctive tests to fasten the diagnostic process and further increase the diagnostic yield

    A new rapid method for direct antimicrobial susceptibility testing of bacteria from positive blood cultures

    Get PDF
    Background: Rapid identification and antimicrobial susceptibility testing (AST) of the causative agent(s) of bloodstream infections can lead to prompt appropriate antimicrobial therapy. To shorten species identification, in this study bacteria were recovered from monomicrobial blood cultures by serum separator tubes and spotted onto the target plate for direct MALDI-TOF MS identification. Proper antibiotics were selected for direct AST based on species identification. In order to obtain rapid AST results, bacteria were recovered from positive blood cultures by two different protocols: by serum separator tubes (further referred to as PR1), or after a short-term subculture in liquid medium (further referred to as PR2). The results were compared with those obtained by the method currently used in our laboratory consisting in identification by MALDI-TOF and AST by Vitek 2 or Sensititre on isolated colonies. Results: The direct MALDI-TOF method concordantly identified with the current method 97.5 % of the Gram-negative bacteria and 96.1 % of the Gram-positive cocci contained in monomicrobial blood cultures. The direct AST by PR1 and PR2 for all isolate/antimicrobial agent combinations was concordant/correct with the current method for 87.8 and 90.5 % of Gram-negative bacteria and for 93.1 and 93.8 % of Gram-positive cocci, respectively. In particular, 100 % categorical agreement was found with levofloxacin for Enterobacteriaceae by both PR1 and PR2, and 99.0 and 100 % categorical agreement was observed with linezolid for Gram-positive cocci by PR1 and PR2, respectively. There was no significant difference in accuracy between PR1 and PR2 for Gram-negative bacteria and Gram-positive cocci. Conclusions: This newly described method seems promising for providing accurate AST results. Most importantly, these results would be available in a few hours from blood culture positivity, which would help clinicians to promptly confirm or streamline an effective antibiotic therapy in patients with bloodstream infections

    Survival and persistence of Bacillus clausii in the human gastrointestinal tract following oral administration as spore-based probiotic formulation

    Get PDF
    AIMS: This study aimed to investigate the fate of Bacillus clausii spores orally administered as lyophilized or liquid formulation to healthy volunteers. METHODS AND RESULTS: The study was a randomized, open-label, cross-over trial in which two commercial probiotic formulations containing spores of four antibiotic-resistant B. clausii strains (OC, NR, SIN, T) were given as a single dose administration. Faecal B. clausii units of each strain were counted on selective media and extrapolated for the total weight of evacuated faeces. RAPD-PCR typing was used to confirm B. clausii identification. Bacillus clausii was found alive in faeces for up to 12 days. In some volunteers, the recovered amount of OC, NR or SIN was higher than the number of administered spores. Bioequivalence among the two formulations was demonstrated. CONCLUSIONS: Bacillus clausii spores survive transit through the human gastrointestinal tract. They can undergo germination, outgrowth and multiplication as vegetative forms. Bacillus clausii strains can have different ability to survive in the intestinal environment. Bacillus clausii spores administered as liquid suspension or lyophilized form behave similarly in vivo. SIGNIFICANCE AND IMPACT OF THE STUDY: This work contributes towards a better understanding of the behaviour of B. clausii spores as probiotics
    corecore