18 research outputs found

    Durability performance of Green Concrete Incorporating Various Wastes: A Review

    Get PDF
    The present manuscript stands for the review on the topic of durability attribute of concretes developed by means of green conception with incorporation of a variety of solid industrial waste slag from Ground Granulated Blast Furnace, silica fume, rice husk ash, pulverised fly ash, glass powder waste as well as materials that have undergone recycling in order to know its degree of sustainability. It is highly sought-after to transform these types of waste into a precious adding up materials in place of Ordinary Portland Cement (OPC) in building-up of Green concrete with affordable cost and more essential with a little carbon footprint. How far these Green concept concretes have succeeded in context to its durability characteristic is the principal focus of this review study. There prevails an enormous demand for cost-effective construction materials for offering enough residences and infrastructure networks to get rid of the burgeoning population on the planet earth. The centre of attention is to make researcher, engineer and infrastructure related peoples, as well as construction industry au courant of absorbing the, dissipate materials and their promotion as an acceptable, sustainable and cost-effective building materials. The apposite standards of durability and still excellent researches on the sustainability of this novel Green concept concrete will encourage for espousal of gargantuan construction and infrastructures projects globally. Looking to the above facts, it can be predicted that the said Green technology bestows the impression to have dazzling potential and its approval in construction industries which establishes it as the most promising future edifice material

    Durability performance of Green Concrete Incorporating Various Wastes: A Review

    Get PDF
    The present manuscript stands for the review on the topic of durability attribute of concretes developed by means of green conception with incorporation of a variety of solid industrial waste slag from Ground Granulated Blast Furnace, silica fume, rice husk ash, pulverised fly ash, glass powder waste as well as materials that have undergone recycling in order to know its degree of sustainability. It is highly sought-after to transform these types of waste into a precious adding up materials in place of Ordinary Portland Cement (OPC) in building-up of Green concrete with affordable cost and more essential with a little carbon footprint. How far these Green concept concretes have succeeded in context to its durability characteristic is the principal focus of this review study. There prevails an enormous demand for cost-effective construction materials for offering enough residences and infrastructure networks to get rid of the burgeoning population on the planet earth. The centre of attention is to make researcher, engineer and infrastructure related peoples, as well as construction industry au courant of absorbing the, dissipate materials and their promotion as an acceptable, sustainable and cost-effective building materials. The apposite standards of durability and still excellent researches on the sustainability of this novel Green concept concrete will encourage for espousal of gargantuan construction and infrastructures projects globally. Looking to the above facts, it can be predicted that the said Green technology bestows the impression to have dazzling potential and its approval in construction industries which establishes it as the most promising future edifice material

    Valorisation of Waste Glasses for the Development of Geopolymer Mortar—Properties and Applications: An Appraisal

    No full text
    The current review paper studies the most noteworthy points in the fabrication of inorganic, eco-benign geopolymer mortar stressing the valorisation of Waste of Glasses (WG) about its properties and applications. Only a few studies are so far accessible on the topic, and therefore, more advanced studies in this respect will be valuable to construction industries and the research scientist, too. Mostly, the centre of attention on its valorisation with WG points a finger to its attitude to embrace the “conversion of wastes into best” strategy. Up until now, their character is neither well understood nor as embraced as OPC mortars. That is why this article reviews its confined literature with an aim to comprehend the valorisation of WG incorporation with geopolymer mortar, and it also reviews studies on its properties and applications, establishing it as a forthcoming constructive, productive, cost-effective, and sustainable large-scale construction material. The recommendations of this paper will be helpful for potential researchers on the topic. However, there are some challenges, such as curing impediments, occasionally practical antagonises of use, a restrained chain of supply, and a precondition for a sharp-eyed command of mixing design for preparing it for use in roadways to replace OPC counterparts in industry. When fabricated by employing abundantly available precursors, activators, and WG up to the standard superior control of varied properties, chiefly strength, durability, and the low-carbon footprints of alkali activators, GP mortars supplemented with WG are ground-breaking approaches to part of the prospect toolbox of sustainable and reasonably inexpensive construction materials. Finally, the paper identifies research work challenges, endorsement of utilisation, and most essentially the features of its properties and pertinent discussions for this promising new kind of valorised construction material

    Rubberized Geopolymer Composites: Value-Added Applications

    No full text
    The discovery of an innovative class of inorganic polymers has brought forth a revolution in the history of construction technology. Now, no energy-intensive reactions at elevated temperatures are essential, as found in the case of contemporary cement production. In addition to their attributes of low energy and a mitigated carbon footprint, geopolymeric composites can incorporate diversely originated and profound wastes in their manufacturing. As of today, profoundly accessible landfills of rubber tyre waste negatively impact the environment, water, and soil, with many health hazards. Their nonbiodegradable complex chemical structure supports recycling, and toxic gases are emitted by burning them, leading to aesthetic issues. These, altogether, create great concern for well-thought-out disposal methods. One of the achievable solutions is processing this waste into alternative aggregates to thus generate increased economic value whilst reducing primary aggregate consumption through the incorporation of these vast automobile solid wastes in the manufacturing of geopolymer construction composites, e.g., binders, mortar, concrete, etc., produced through the process of geopolymerization as a replacement for natural aggregates, providing relief to the crisis of the degradation of restricted natural aggregate resources. Currently, tyre rubber is one of the most outstanding materials, extensively employed in scores of engineering applications. This manuscript presents a state-of-the-art review of value-added applications in the context of rubberized geopolymer building composites and a review of past investigations. More significantly, this paper reviews rubberized geopolymer composites for their value-added applications

    Fire Resistance Behaviour of Geopolymer Concrete: An Overview

    No full text
    Even though, an innovative inorganic family of geopolymer concretes are eye-catching potential building materials, it is quite essential to comprehend the fire and thermal resistance of these structural materials at a very high temperature and also when experiencing fire with a view to make certain not only the safety and security of lives and properties but also to establish them as more sustainable edifice materials for future. The experimental and field observations of degree of cracking, spalling and loss of strength within the geopolymer concretes subsequent to exposure at elevated temperature and incidences of occurrences of disastrous fires extend an indication of their resistance against such severely catastrophic conditions. The impact of heat and fire on mechanical attributes viz., mechanical-compressive strength, flexural behavior, elastic modulus; durability—thermal shrinkage; chemical stability; the impact of thermal creep on compressive strength; and microstructure properties—XRD, FTIR, NMR, SEM as well as physico-chemical modifications of geopolymer composites subsequent to their exposures at elevated temperatures is reviewed in depth. The present scientific state-of-the-art review manuscript aimed to assess the fire and thermal resistance of geopolymer concrete along with its thermo-chemistry at a towering temperature in order to introduce this novel, most modern, user and eco-benign construction materials as potentially promising, sustainable, durable, thermal and fire-resistant building materials promoting their optimal and apposite applications for construction and infrastructure industries

    Durability Performance Evaluation of Rubberized Geopolymer Concrete

    No full text
    Unfortunately, the production of cement impacts pessimistically on environments since it emits CO2—a principal Green House Gas (GHG)—encouraging the earth-heating dilemma. Moreover, it necessitates not only high temperature produced by the devouring of narrow natural mineral coal resources to obtain very high amounts of energy, but it also gulps down natural limestone deposits as a raw material that is found confined in nature to obtain intense energy. Quite recently, geopolymerisation—an exothermic process, through which geopolymeric binders can be produced by synthesis of a pozzolanic precursor rich in Alumina and Silica, for an instant, Fly Ash, with alkali solution for activation in an alkali medium at a low temperature and low operational energy—is recognized as a brilliantly promising alternative to conventional cement. That means, no elevated temperature and higher energy consuming reactions are essential any more as found associated with contemporary cement production. This research paper moves towards fulfilling the performance evaluation of durability studies viz., water permeability, sorptivity, sulphate resistance, acid resistance, salt resistance, chloride diffusion, drying shrinkage, and corrosion of fly ash based user and eco-friendly rubberized (containing rubber tyre fibres) geopolymer concrete. Comparisons of the outcomes have been made with its counterpart, which has unearthed that Rubberized Geopolymer Concrete proved to better concerning all the above-mentioned parameters than Rubberized OPC-Concrete

    Review on Performance Evaluation of Autonomous Healing of Geopolymer Composites

    No full text
    It is a universal fact that concrete is one of the most employed construction materials and hence its exigency is booming at a rocket pace, which in turn, has resulted in a titanic demand of ordinary Portland cement. Regrettably, the production of this essential binder of concrete is not merely found to consume restricted natural resources but also found to be associated with emission of carbon dioxide—a primary greenhouse gas (GHG) which is directly answerable to earth heating, resulting in the gigantic dilemma of global warming. Nowadays, in order to address all these impasses, researchers are attracted to innovative Geopolymer concrete technology. However, crack development of various sizes within the concrete is inevitable irrespective of its kind, mix design, etc., owing to external and internal factors viz., over-loading, exposure to severe environments, shrinkage, or error in design, etc., which need to be sealed otherwise these openings permits CO2, water, fluids, chemicals, harmful gases, etc., to pass through reducing service life and ultimately causing the failure of concrete structures in the long term. That is why instant repairs of these cracks are essential, but manual mends are time-consuming and costly too. Hence, self-healing of cracks is desirable to ease their maintenances and repairs. Self-healing geopolymer concrete (SHGPC) is a revolutionary product extending the solution to all these predicaments. The present manuscript investigates the self-healing ability of geopolymer paste, geopolymer mortar, and geopolymer concrete—a slag-based fiber-reinforced and a variety of other composites that endow with multifunction have also been compared, keeping the constant ratio of water to the binder. Additionally, the feasibility of bacteria in a metakaolin-based geopolymer concrete for self-healing the cracks employing Bacteria-Sporosarcina pasteurii, producing Microbial Carbonate Precipitations (MCP), was taken into account with leakage and the healing process in a precipitation medium. Several self-healing mechanisms, assistances, applications, and challenges of every strategy are accentuated, compared with their impacts as a practicable solution of autogenously-healing mechanisms while active concretes are subjected to deterioration, corrosion, cracking, and degradation have also been reviewed systematically

    A Review on the Performance Evaluation of Autonomous Self-Healing Bacterial Concrete: Mechanisms, Strength, Durability, and Microstructural Properties

    No full text
    The development of cracks, owing to a relatively lower tensile strength of concrete, diverse loading, and environmental factors driving the deterioration of structures, is an inescapable key concern for engineers. Reparation and maintenance operations are thus extremely important to prevent cracks from spreading and mitigating the lifetime of structures. However, ease of access to the cracked zone may be challenging, and it also needs funds and manual power. Hence, autonomous sealing of cracks employing microorganisms into the concrete sans manual intervention is a promising solution to the dilemma of the sustainable improvement of concrete. ‘Ureolytic bacteria’, key organism species in rumen-producing ‘urease’ enzymes such as Bacillus pasteurii or subtilis—when induced—are capable of producing calcium carbonate precipitations into the concrete. As their cell wall is anionic, CaCO3 accumulation on their surface is extensive, and the whole cell, therefore, becomes crystalline and ultimately plugs pores and cracks. This natural induction technique is an environmentally friendly method that researchers are studying intensively. This manuscript reviews the application process of bacterial healing to manufacture autonomous self-healing bacterial concrete. Additionally, it provides a brief review of diverse attributes of this novel concrete which demonstrate the variations with the auto-addition of different bacteria, along with an evaluation of crack healing as a result of the addition of these bacteria directly into concrete or after encapsulation in a protective shell. Comparative assessment techniques for autonomous, bio-based self-healing are also discussed, accompanied by progress, potential, modes of application of this technique, and its resultant benefits in the context of strength and durability. Imperatives for quantitative sustainability assessment and industrial adoption are identified, along with the sealing of artificially cracked cement mortar with sand as a filling material in given spaces, as well as urea and CaCl2 medium treatment with Bacillus pasteurii and Sporosarcina bacteria. The assessment of the impact on the compressive strength and rigidity of cement mortar cubes after the addition of bacteria into the mix is also considered. Scanning electron microscope (SEM) images on the function of bacteria in mineral precipitation that is microbiologically induced are also reviewed. Lastly, future research scope and present gaps are recognised and discussed
    corecore