585 research outputs found

    Glueball masses in the large N limit

    Full text link
    The lowest-lying glueball masses are computed in SU(NN) gauge theory on a spacetime lattice for constant value of the lattice spacing aa and for NN ranging from 3 to 8. The lattice spacing is fixed using the deconfinement temperature at temporal extension of the lattice NT=6N_T = 6. The calculation is conducted employing in each channel a variational ansatz performed on a large basis of operators that includes also torelon and (for the lightest states) scattering trial functions. This basis is constructed using an automatic algorithm that allows us to build operators of any size and shape in any irreducible representation of the cubic group. A good signal is extracted for the ground state and the first excitation in several symmetry channels. It is shown that all the observed states are well described by their large NN values, with modest O(1/N2){\cal O}(1/N^2) corrections. In addition spurious states are identified that couple to torelon and scattering operators. As a byproduct of our calculation, the critical couplings for the deconfinement phase transition for N=5 and N=7 and temporal extension of the lattice NT=6N_T=6 are determined.Comment: 1+36 pages, 22 tables, 21 figures. Typos corrected, conclusions unchanged, matches the published versio

    Properties of the deconfining phase transition in SU(N) gauge theories

    Full text link
    We extend our earlier investigation of the finite temperature deconfinement transition in SU(N) gauge theories, with the emphasis on what happens as N->oo. We calculate the latent heat in the continuum limit, and find the expected quadratic in N behaviour at large N. We confirm that the phase transition, which is second order for SU(2) and weakly first order for SU(3), becomes robustly first order for N>3 and strengthens as N increases. As an aside, we explain why the SU(2) specific heat shows no sign of any peak as T is varied across what is supposedly a second order phase transition. We calculate the effective string tension and electric gluon masses at T=Tc confirming the discontinuous nature of the transition for N>2. We explicitly show that the large-N `spatial' string tension does not vary with T for T<Tc and that it is discontinuous at T=Tc. For T>Tc it increases as T-squared to a good approximation, and the k-string tension ratios closely satisfy Casimir Scaling. Within very small errors, we find a single Tc at which all the k-strings deconfine, i.e. a step-by-step breaking of the relevant centre symmetry does not occur. We calculate the interface tension but are unable to distinguish between linear or quadratic in N variations, each of which can lead to a striking but different N=oo deconfinement scenario. We remark on the location of the bulk phase transition, which bounds the range of our large-N calculations on the strong coupling side, and within whose hysteresis some of our larger-N calculations are performed.Comment: 50 pages, 14 figure

    Polyakov Loops, Z(N) Symmetry, and Sine-Law Scaling

    Full text link
    We construct an effective action for Polyakov loops using the eigenvalues of the Polyakov loops as the fundamental variables. We assume Z(N) symmetry in the confined phase, a finite difference in energy densities between the confined and deconfined phases as T→0T\to 0, and a smooth connection to perturbation theory for large TT. The low-temperature phase consists of N−1N-1 independent fields fluctuating around an explicitly Z(N) symmetric background. In the low-temperature phase, the effective action yields non-zero string tensions for all representations with non-trivial NN-ality. Mixing occurs naturally between representations of the same NN-ality. Sine-law scaling emerges as a special case, associated with nearest-neighbor interactions between Polyakov loop eigenvalues.Comment: Talk presented at Lattice2004(topology), Fermilab, June 21-26, 2004, 3 page

    Analysis of the Expression of Neurotrophins and Their Receptors in Adult Zebrafish Kidney

    Get PDF
    Neurotrophins and their receptors are involved in the development and maintenance of neuronal populations. Different reports have shown that all neurotrophin/receptor pathways can also play a role in several non-neuronal tissues in vertebrates, including the kidney. These signaling pathways are involved in different events to ensure the correct functioning of the kidney, such as growth, differentiation, and regulation of renal tubule transport. Previous studies in some fish species have identified the neurotrophins and receptors in the kidney. In this study, for the first time, we compare the expression profiles (mRNA and protein) of all neurotrophin/receptor pathways in the kidney of the adult zebrafish. We quantify the levels of mRNA by using qPCR and identify the expression pattern of each neurotrophin/receptor pathway by in situ hybridization. Next, we detect the proteins using Western blotting and immunohistochemistry. Our results show that among all neurotrophins analyzed, NT-3/TrkC is the most expressed in the glomerule and tubule and in the hematopoietic cells, similar to what has been reported in the mammalian kidney

    Conformal vs confining scenario in SU(2) with adjoint fermions

    Get PDF
    The masses of the lowest-lying states in the meson and in the gluonic sector of an SU(2) gauge theory with two Dirac flavors in the adjoint representation are measured on the lattice at a fixed value of the lattice coupling ÎČ=4/g02=2.25\beta = 4/g_0^2 = 2.25 for values of the bare fermion mass m0m_0 that span a range between the quenched regime and the massless limit, and for various lattice volumes. Even for light constituent fermions the lightest glueballs are found to be lighter than the lightest mesons. Moreover, the string tension between two static fundamental sources strongly depends on the mass of the dynamical fermions and becomes of the order of the inverse squared lattice linear size before the chiral limit is reached. The implications of these findings for the phase of the theory in the massless limit are discussed and a strategy for discriminating between the (near--)conformal and the confining scenario is outlined.Comment: 5 pages, 4 figures using RevTeX4, Typos corrected, references added. Versions to appear on PR

    Evidence for diquarks in lattice QCD

    Get PDF
    Diquarks may play an important role in hadron spectroscopy, baryon decays and color superconductivity. We investigate the existence of diquark correlations in lattice QCD by considering systematically all the lowest energy diquark channels in a color gauge-invariant setup. We measure mass differences between the various channels and show that the positive parity scalar diquark is the lightest. Quark-quark correlations inside the diquark are clearly seen in this channel, and yield a diquark size of order 1 fm.Comment: Version as published in Phys. Rev. Lett.97, 222002,2006; 4 pages, 5 figure

    About the Casimir scaling hypothesis

    Full text link
    A lattice calculation shows that the Casimir scaling hypothesis is well verified in QCD, that is to say that the potential between two opposite color charges in a color singlet is proportional to the value of the quadratic Casimir operator. On the other hand, in a bag model calculation for the same system, a scaling of the string tension with the square root of the quadratic Casimir operator is obtained. It is shown that, within the same formalism but with the assumption that the width of the string is independent of the color charges, the string tension is proportional to value of the quadratic Casimir operator. Some considerations about the color behavior of the total interaction are given

    SO(2N) and SU(N) gauge theories in 2+1 dimensions

    Full text link
    We perform an exploratory investigation of how rapidly the physics of SO(2N) gauge theories approaches its N=oo limit. This question has recently become topical because SO(2N) gauge theories are orbifold equivalent to SU(N) gauge theories, but do not have a finite chemical potential sign problem. We consider only the pure gauge theory and, because of the inconvenient location of the lattice strong-to-weak coupling 'bulk' transition in 3+1 dimensions, we largely confine our numerical calculations to 2+1 dimensions. We discuss analytic expectations in both D=2+1 and D=3+1, show that the SO(6) and SU(4) spectra do indeed appear to be the same, and show that a number of mass ratios do indeed appear to agree in the large-N limit. In particular SO(6) and SU(3) gauge theories are quite similar except for the values of the string tension and coupling, both of which differences can be readily understood.Comment: 27 pages, 9 figure
    • 

    corecore