998 research outputs found

    Energy and technological refurbishment of the School of Architecture Valle Giulia, Rome

    Get PDF
    Modern architecture built in historical urban contexts represents a demanding issue when its energy efficiency should be improved. Indeed, the strongest efforts have to be made to maintain the architectural identity and its harmony with the surrounding cultural heritage. This study deals with the main building of the School of Architecture Valle Giulia in Rome, designed by Enrico Del Debbio in the 30’s. Further constraints are related to several interventions of airspace expansion starting from 1958 which involved the building starting from 1958. So, preservation would mean highlighting its historic change but, adapting the built environment to the contemporary users’ needs. As above-mentioned, the building belongs to the Valle delle Accademie, within the historic park of Villa Borghese, so that to acquire landscaping values. Those latter ones call for ulterior requirements when any new design process is conceived. The study provides a global renewal of the building accounting for the current low Indoor Environmental Quality in both summer and winter seasons and the lack of suitability to the contemporary University student’s needs. The interaction between building performance and HVAC systems was studied by collecting data and architectural surveys conducted by all the architects who modified the building. This procedure was chosen since thermo-physical investigations are considered destructive due to required perforations to identify the actual wall layers. Moreover, thermographic surveys were carried out to validate the modelled building response. The result of the study is the identification of viable interventions to improve the accessibility and fruition of the building as well as its energy performance. A specific cost-benefit analysis was done to prioritize the design options along with considering the measures needed to preserve all the architectural features and values

    Migration of polypropylene oligomers into ready-to-eat vegetable soups

    Get PDF
    Polyolefin oligomeric hydrocarbons (POH) are non-intentionally added substances (NIAS) which mainly reside in the polymer (PE, PP) as a consequence of the polymerization process, and that under favorable conditions (high fat content, high temperature, and long contact time) may migrate at high amount from the packaging into the food. The food industry offers a wide range of ready-to-eat products, among these, vegetable soups designed to be stored at refrigeration temperature (for times around 6 weeks), and in most cases to be heated for a few minutes in a microwave oven (into the original container, mostly of PP) before consumption. The present work aimed to study for the first-time migration of POH during the shelf life of these products, including storage at refrigeration temperature and after microwave heating. On-line high-performance liquid chromatography (HPLC)-gas chromatography (GC), followed by flame ionization detection (FID), was applied for POH analysis in a number of ready-to-eat products purchased from the Italian market. Microwave heating determined a variable POH increase ranging from 0.1 to 6.2 mg/kg. Parameters possibly affecting migration such as fat content and heating time were also studied

    Effect of different oleogelators on lipolysis and curcuminoid bioaccessibility upon in vitro digestion of sunflower oil oleogels

    Get PDF
    Sunflower oil enriched with curcuminoid compounds (CUs) was gelled by adding 5% (w/w) saturated monoglycerides (MG), rice bran waxes (RW) or a mixture of \u3b2-sitosterol and \u3b3-oryzanol (PS). The resulting oleogels differed for rheological properties and firmness due to the difference in gel network structure. PS oleogel was the firmest sample followed by RW and MG ones. Upon in vitro digestion, fatty acid release as a function of digestion time was greatly affected by oleogel structure: the extent of lipolysis decreased as oleogel strength increased (PS < RW < MG). On the other hand, the nature of the oleogelator affected CUs bioaccessibility, which was lower in oleogels containing crystalline particles (MG and RW). These findings appear interesting in the attempt to develop oleogels able to control lipid digestion as well as to deliver bioactive molecules in food systems

    Microwave-based technique for fast and reliable extraction of organic contaminants from food, with a special focus on hydrocarbon contaminants

    Get PDF
    Due to food complexity and the low amount at which contaminants are usually present in food, their analytical determination can be particularly challenging. Conventional sample preparation methods making use of large solvent volumes and involving intensive sample manipulation can lead to sample contamination or losses of analytes. To overcome the disadvantages of conventional sample preparation, many researchers put their efforts toward the development of rapid and environmental-friendly methods, minimizing solvent consumption. In this context, microwave-assisted-extraction (MAE) has obtained, over the last years, increasing attention from analytical chemists and it has been successfully utilized for the extraction of various contaminants from different foods. In the first part of this review, an updated overview of the microwave-based extraction technique used for rapid and efficient extraction of organic contaminants from food is given. The principle of the technique, a description of available instrumentation, optimization of parameters affecting the extraction yield, as well as integrated techniques for further purification/enrichment prior to the analytical determination, are illustrated. In the second part of the review, the latest applications concerning the use of microwave energy for the determination of hydrocarbon contaminants-namely polycyclic aromatic hydrocarbons (PAHs) and mineral oil hydrocarbons (MOH)-are reported and critically overviewed and future trends are delineated

    Effect of the refining process on total hydroxytyrosol, tyrosol, and tocopherol contents of olive oil

    Get PDF
    The impact of the olive oil refining process on major antioxidant compound levels was evaluated by means of UHPLC analysis of lampante olive oils collected at different stages of the refining procedure (degumming, chemical and physical flash neutralization, bleaching, and deodorization). For this purpose, the evolution of the tocopherol fraction was investigated by means of the UHPLC-FL method, while the influence of the refining process on the total hydrolyzed phenolic content was assessed by measuring hydroxytyrosol and tyrosol levels after acid hydrolysis of the phenolic extracts. Refining was found to have a marked effect on total hydroxytyrosol and tyrosol contents, as they are completely removed in the early steps of the refining procedure. In contrast, the variation trends of tocopherols are not always clear-cut, and significant decreases in content from 7% to 16% were only revealed during refining in four out of nine samples. In addition, five of the nine refined oils showed final tocopherol concentrations higher than 200 mg/kg, the limit imposed by international standards regarding the content of such compounds in commercial olive oils. This study supports the need for a revision of the International Olive Oil Council (IOC) standard relative to the limit established for tocopherol addition to refined oils to avoid possible legal and economic trade issues

    Valorisation productive de zones dégradées à l'aide de plantations forestières : un exemple d'expérimentation en Sardaigne.

    Get PDF
    Décrit des interventions expérimentales réalisées en 1986-87 en Sardaigne afin de : - identifier les espèces forestières appropriées - mettre au point des techniques de préparation appropriées

    Determination of III-V/Si absolute interface energies: impact on wetting properties

    Full text link
    Here, we quantitatively determine the impact of III-V/Si interface atomic configuration on the wetting properties of the system. Based on a description at the atomic scale using density functional theory, we first show that it is possible to determine the absolute interface energies in heterogeneous materials systems. A large variety of absolute GaP surface energies and GaP/Si interface energies are then computed, confirming the large stability of charge compensated III-V/Si interfaces with an energy as low as 23 meV/\r{A}2^{2}. While stable compensated III-V/Si interfaces are expected to promote complete wetting conditions, it is found that this can be easily counterbalanced by the substrate initial passivation, which favors partial wetting conditions.Comment: 17 pages, 14 figure

    Occurrence of n-Alkanes in vegetable oils and their analytical determination

    Get PDF
    Vegetable oils contain endogenous linear hydrocarbons, namely n-alkanes, ranging from n-C21 to n-C35 with odd chain lengths prevalent. Different vegetable oils, as well as oils of the same type, but of different variety and provenience, show typical n-alkane patterns, which could be used as a fingerprint to characterize them. In the first part of this review, data on the occurrence of n-alkanes in different vegetable oils (total and predominant n-alkanes) are given, with a focus on obtaining information regarding variety and geographical origin. The second part aims to provide the state of the art on available analytical methods for their determination. In particular, a detailed description of the sample preparation protocols and analytical determination is reported, pointing out the main drawbacks of traditional sample preparation and possible solutions to implement the analysis with the aim to shift toward rapid and solvent-sparing methods

    Molecularly imprinted polymer as selective sorbent for the extraction of zearalenone in edible vegetable oils

    Get PDF
    A method based on the selective extraction of zearalenone (ZON) from edible vegetable oils using molecularly imprinted polymer (MIP) has been developed and validated. Ultra-high-pressure liquid chromatography coupled with a fluorescence detection system was employed for the detection of zearalenone. The method was applied to the analysis of zearalenone in maize oil samples spiked at four concentration levels within the maximum permitted amount specified by the European Commission Regulation (EC) No. 1126/2007. As a result, the proposed methodology provided high recoveries (>72%) with good linearity (R2 > 0.999) in the range of 10-2000 \u3bcg/kg and a repeatability relative standard deviation below 1.8%. These findings meet the analytical performance criteria specified by the European Commission Regulation No. 401/2006 and reveal that the proposed methodology can be successfully applied for monitoring zearalenone at trace levels in di_erent edible vegetable oils. Acomparison of MIP behavior with the ones of QuEChERS and liquid-liquid extraction was also performed, showing higher extraction rates and precision of MIP. Finally, the evolution of ZON contamination during the maize oil refining process was also investigated, demonstrating how the process is unable to completely remove (60%) ZON from oil samples
    • …
    corecore