160 research outputs found

    A sequence of nitrogen-rich very red giants in the globular cluster NGC 1851

    Full text link
    We present the abundances of N in a sample of 62 stars on the red giant branch (RGB) in the peculiar globular cluster NGC 1851. The values of [N/Fe] ratio were obtained by comparing the flux measured in the observed spectra with that from synthetic spectra for up to about 15 features of CN. This is the first time that N abundances are obtained for such a large sample of RGB stars from medium-resolution spectroscopy in this cluster. With these abundances we provide a chemical tagging of the split red giant branch found from several studies in NGC 1851. The secondary, reddest sequence on the RGB is populated almost exclusively by N-rich stars, confirming our previous suggestion based on Stromgren magnitudes and colours. These giants are also, on average, enriched in s-process elements such as Ba, and are likely the results of pollution from low mass stars that experienced episodes of third dredge-up in the asymptotic giant branch phase.Comment: Version to match the one in press on Astronomy and Astrophysic

    An aluminium tool for multiple stellar generations in the globular clusters 47 Tuc and M 4

    Full text link
    We present aluminium abundances for a sample of about 100 red giant stars in each of the Galactic globular clusters 47 Tuc (NGC 104) and M 4 (NGC 6121). We have derived homogeneous abundances from intermediate-resolution FLAMES/GIRAFFE spectra. Aluminium abundances are from the strong doublet Al I at 8772-8773 A as in previous works done for giants in NGC 6752 and NGC 1851, and nitrogen abundances are extracted from a large number of features of the CN molecules, by assuming a suitable carbon abundance. We added previous homogeneous abundances of O and Na and newly derived abundances of Mg and Si for our samples of 83 stars in M 4 and 116 stars in 47 Tuc to obtain the full set of elements from proton-capture reactions produced by different stellar generations in these clusters. By simultaneously studying the Ne-Na and Mg-Al cycles of H-burning at high temperature our main aims are to understand the nature of the polluters at work in the first generation and to ascertain whether the second generation of cluster stars was formed in one or, rather, several episodes of star formation. Our data confirm that in M 4 only two stellar populations are visible. On the other hand, for 47 Tuc a cluster analysis performed on our full dataset suggests that at least three distinct groups of stars are present on the giant branch. The abundances of O, Na, Mg and Al in the intermediate group can be produced within a pollution scenario; results for N are ambiguous, depending on the C abundance we adopt for the three groups.Comment: 11 pages, 9 figures, 2 on-line tables: accepted for publication on Astronomy and Astrophysic

    Reading the book: from "chemical anomalies" to "standard composition" of globular clusters

    Full text link
    It is now commonly accepted that globular clusters (GCs) have undergone a complex formation and that they host at least two stellar generations. This is a recent paradigm and is founded on both photometric and spectroscopic evidence. We concentrate on results based on high-resolution spectroscopy and on how we moved from single to multiple stellar populations concept for GCs. We underline that the peculiar chemical composition of GC stars is fundamental in establishing the multiple populations scenario and briefly outline what can be learned from observations. Finally, recent observational results on large samples of stars in different evolutionary phases are discussed.Comment: 5 pages, 1 figure. To appear in the proceedings of "Reading the book of globular clusters with the lens of stellar evolution", in the Memorie della Societa Astronomica Italian

    Calcium and light-elements abundance variations from high resolution spectroscopy in globular clusters

    Full text link
    We use abundances of Ca, O, Na, Al from high resolution UVES spectra of 200 red giants in 17 globular clusters (GCs) to investigate the correlation found by Lee et al. (2009) between chemical enrichment from SN II and star-to-star variations in light elements in GC stars. We find that (i) the [Ca/H] variations between first and second generation stars are tiny in most GCs (~0.02-0.03 dex, comparable with typical observational errors). In addition, (ii) using a large sample of red giants in M 4 with abundances from UVES spectra from Marino et al. (2008), we find that Ca and Fe abundances in the two populations of Na-poor and Na-rich stars are identical. These facts suggest that the separation seen in color-magnitude diagrams using the U band or hk index (as observed in NGC 1851 by Han et al. 2009) are not due to Ca variations. Small differences in [Ca/H] as associated to hk variations might be due to a small systematic effect in abundance analysis, because most O-poor/Na-rich (He-rich) stars have slightly larger [Fe/H] (by 0.027 dex on average, due to decreased H in the ratio) than first generation stars and are then located at redder positions in the V,hk plane. While a few GCs (M 54, omega Cen, M 22, maybe even NGC 1851) do actually show various degree of metallicity spread, our findings eliminate the need of a close link between the enrichment by core-collapse SNe with the mechanism responsible for the Na-O anticorrelation.Comment: Uses emulateapj, 3 figures, 2 tables (1 only available in electronic form), accepted for publication on ApJ Letter

    Na-O Anticorrelation And HB I. The Na-O anticorrelation in NGC 2808

    Get PDF
    We derived atmospheric parameters and elemental abundances of Fe, O and Na for about 120 red giant stars in the Galactic globular cluster NGC 2808. Our results are based on the analysis of medium-high resolution (R=22000-24000) GIRAFFE spectra acquired with the FLAMES spectrograph at VLT-UT2 as a part of a project aimed at studying the Na-O anticorrelation as a function of physical parameters in globular clusters. We present here the anticorrelation of Na and O abundances in NGC 2808, and we discuss the distribution function of stars along this relation. Besides a bulk of O-normal stars, with composition typical of field halo stars, NGC 2808 seems to host two other groups of O-poor and super O-poor stars. In this regard, NGC 2808 is similar to M 13, the template cluster for the Na-O anticorrelation. However, at variance with M 13, most stars in NGC 2808 are O-rich. This might be related to the horizontal branch morphologies which are very different in these two clusters. The average metallicity we found for NGC 2808 is [Fe/H]=-1.10 (rms=0.065 dex, from 123 stars). We also found some evidence of a small intrinsic spread in metallicity, but more definitive conclusions are hampered by the presence of a small differential reddening.Comment: 12 pages, 6 tables, 7 figures. Accepted for publication on A&

    A Search for Binary Stars at Low Metallicity

    Full text link
    We present initial results measuring the companion fraction of metal-poor stars ([Fe/H]<−<-2.0). We are employing the Lick Observatory planet-finding system to make high-precision Doppler observations of these objects. The binary fraction of metal-poor stars provides important constraints on star formation in the early Galaxy (Carney et al. 2003). Although it has been shown that a majority of solar metallicity stars are in binaries, it is not clear if this is the case for metal-poor stars. Is there a metallicity floor below which binary systems do not form or become rare? To test this we are determining binary fractions at metallicities below [Fe/H]=−2.0=-2.0. Our measurments are not as precise as the planet finders', but we are still finding errors of only 50 to 300 m/s, depending on the signal-to-noise of a spectrum and stellar atmosphere of the star. At this precision we can be much more complete than previous studies in our search for stellar companions.Comment: To appear in conference proceedings,"First Stars III", eds. B. O'Shea, A. Heger & T. Abel. 3 pages, 5 figure

    Line lists for the A2PI-X2Sigma+ (red) and {B2Sigma+-X2Sigma} (violet) Systems of CN, 13C14N, and 12C15N, and Application to Astronomical Spectra

    Get PDF
    New red and violet system line lists for the CN isotopologues 13C14N and 12C15N have been generated. These new transition data are combined with those previously derived for 12C14N, and applied to the determination of CNO abundances in the solar photosphere and in four red giant stars: Arcturus, the bright very low-metallicity star HD 122563, and carbon-enhanced metal-poor stars HD 196944 and HD 201626. When lines of both red and violet system lines are detectable in a star, their derived N abundances are in good agreement. The mean N abundances determined in this work generally are also in accord with published values.Comment: ApJS, in press, 37 pages, 7 figures, 3 table

    Terzan 8: a Sagittarius-flavoured globular cluster

    Full text link
    Massive globular clusters (GCs) contain at least two generations of stars with slightly different ages and clearly distinct light elements abundances. The Na-O anticorrelation is the best studied chemical signature of multiple stellar generations. Low-mass clusters appear instead to be usually chemically homogeneous. We are investigating low-mass GCs to understand what is the lower mass limit where multiple populations can form, mainly using the Na and O abundance distribution. We used VLT/FLAMES spectra of giants in the low-mass, metal-poor GC Terzan 8, belonging to the Sagittarius dwarf galaxy, to determine abundances of Fe, O, Na, alpha-, Fe-peak, and neutron-capture elements in six stars observed with UVES and 14 observed with GIRAFFE. The average metallicity is [Fe/H]=-2.27+/-0.03 (rms=0.08), based on the six high-resolution UVES spectra. Only one star, observed with GIRAFFE, shows an enhanced abundance of Na and we tentatively assign it to the second generation. In this cluster, at variance with what happens in more massive GCs, the second generation seems to represent at most a small minority fraction. We discuss the implications of our findings, comparing Terzan 8 with the other Sgr dSph GCs, to GCs and field stars in the Large Magellanic Cloud, Fornax, and in other dwarfs galaxies.Comment: 15 pages, 12 figures, 10 tables; accepted for publication on Astronomy and Astrophysic
    • …
    corecore