23,748 research outputs found
High-fidelity readout of trapped-ion qubits
We demonstrate single-shot qubit readout with fidelity sufficient for
fault-tolerant quantum computation, for two types of qubit stored in single
trapped calcium ions. For an optical qubit stored in the (4S_1/2, 3D_5/2)
levels of 40Ca+ we achieve 99.991(1)% average readout fidelity in one million
trials, using time-resolved photon counting. An adaptive measurement technique
allows 99.99% fidelity to be reached in 145us average detection time. For a
hyperfine qubit stored in the long-lived 4S_1/2 (F=3, F=4) sub-levels of 43Ca+
we propose and implement a simple and robust optical pumping scheme to transfer
the hyperfine qubit to the optical qubit, capable of a theoretical fidelity
99.95% in 10us. Experimentally we achieve 99.77(3)% net readout fidelity,
inferring at least 99.87(4)% fidelity for the transfer operation.Comment: 4 pages, 3 figures; improved readout fidelity (numerical results
changed
Scalable simultaneous multi-qubit readout with 99.99% single-shot fidelity
We describe single-shot readout of a trapped-ion multi-qubit register using
space and time-resolved camera detection. For a single qubit we measure
0.9(3)x10^{-4} readout error in 400us exposure time, limited by the qubit's
decay lifetime. For a four-qubit register (a "qunybble") we measure an
additional error of only 0.1(1)x10^{-4} per qubit, despite the presence of 4%
optical cross-talk between neighbouring qubits. A study of the cross-talk
indicates that the method would scale with negligible loss of fidelity to
~10000 qubits at a density <~1 qubit/um^2, with a readout time ~1us/qubit.Comment: 4 pages, 3 figures; simulations added to fig.3, with some further
text and figure revisions. Main results unchanged
A framework for the construction of generative models for mesoscale structure in multilayer networks
Multilayer networks allow one to represent diverse and coupled connectivity patterns—such as time-dependence, multiple subsystems, or both—that arise in many applications and which are difficult or awkward to incorporate into standard network representations. In the study of multilayer networks, it is important to investigate mesoscale (i.e., intermediate-scale) structures, such as dense sets of nodes known as communities, to discover network features that are not apparent at the microscale or the macroscale. The ill-defined nature of mesoscale structure and its ubiquity in empirical networks make it crucial to develop generative models that can produce the features that one encounters in empirical networks. Key purposes of such models include generating synthetic networks with empirical properties of interest, benchmarking mesoscale-detection methods and algorithms, and inferring structure in empirical multilayer networks. In this paper, we introduce a framework for the construction of generative models for mesoscale structures in multilayer networks. Our framework provides a standardized set of generative models, together with an associated set of principles from which they are derived, for studies of mesoscale structures in multilayer networks. It unifies and generalizes many existing models for mesoscale structures in fully ordered (e.g., temporal) and unordered (e.g., multiplex) multilayer networks. One can also use it to construct generative models for mesoscale structures in partially ordered multilayer networks (e.g., networks that are both temporal and multiplex). Our framework has the ability to produce many features of empirical multilayer networks, and it explicitly incorporates a user-specified dependency structure between layers. We discuss the parameters and properties of our framework, and we illustrate examples of its use with benchmark models for community-detection methods and algorithms in multilayer networks
Voracité comparative de trois coccinelles prédatrices contre le tétranyque rouge du pommier [Acarina : Tetranychidae]
La voracité de la coccinelle à sept points, Coccinella septempunctata, de la coccinelle à quatorze points, Propylea quatuordecimpunctata, et de la coccinelle orientale, Harmonia axyridis, [Coleoptera : Coccinellidae] a été évaluée en laboratoire face au tétranyque rouge du pommier, Panonychus ulmi [Acarina : Tetranychidae]. Les trois espèces ont consommé le tétranyque rouge. H. axyridis était significativement plus vorace que les autres espèces et présente le potentiel le plus élevé comme ennemi naturel du tétranyque. Malgré sa grande taille, C. septempunctata possédait une voracité très faible, ce qui confirme son inefficacité comme agent de lutte face aux acariens phytophages.Voracity of the seven-spotted ladybeetle, Coccinella septempunctata, the fourteen-spotted ladybeetle, Propylea quatuordecimpunctata, and the oriental ladybeetle, Harmonia axyridis [Coleoptera : Coccinellidae], was evaluated in laboratory on the European red mite, Panonychus ulmi [Acarina : Tetranychidae]. The three species fed on the European red mite. H. axyridis was significantly more voracious than the other species and has the greater potential as a natural enemy of the mite. Despite its large size, C. septempunctata showed a very low voracity, confirming its inefficacy as a biological control agent against phytophagous mites
Emergence of long-range order in BaTiO3 from local symmetry-breaking distortions
By using a symmetry motivated basis to evaluate local distortions against
pair distribution function data (PDF), we show without prior bias, that the
off-centre Ti displacements in the archetypal ferroelectric BaTiO3 are zone
centred and rhombohedral-like in nature across its known ferroelectric and
paraelectric phases. With our newly-gained insight we construct a simple Monte
Carlo (MC) model which captures our main experimental findings and demonstrate
how the rich crystallographic phase diagram of BaTiO3 emerges from correlations
of local symmetry-breaking distortions alone. Our results strongly support the
order-disorder picture for these phase transitions, but can also be reconciled
with the soft-mode theory of BaTiO3 that is supported by some spectroscopic
techniques.Comment: 5 pages, 3 figure
A simple interpretation of quantum mirages
In an interesting new experiment the electronic structure of a magnetic atom
adsorbed on the surface of Cu(111), observed by STM, was projected into a
remote location on the same surface. The purpose of the present paper is to
interpret this experiment with a model Hamiltonian, using ellipses of the size
of the experimental ones, containing about 2300 atoms. The charge distribution
for the different wavefunctions is analyzed, in particular, for those with
energy close to the Fermi energy of copper Ef. Some of them show two symmetric
maxima located on the principal axis of the ellipse but not necessarily at the
foci. If a Co atom is adsorbed at the site where the wavefunction with energy
has a maximum and the interaction is small, the main effect of the
adsorbed atom will be to split this particular wavefunction in two. The total
charge density will remain the same but the local density of states will
present a dip at Ef at any site where the charge density is large enough. We
relate the presence of this dip to the observation of quantum mirages. Our
interpretation suggests that other sites, apart from the foci of the ellipses,
can be used for projecting atomic images and also indicates the conditions for
other non magnetic adsorbates to produce mirages.Comment: 3 pages, 3 Fig
- …