10,050 research outputs found
Waveform-Controlled Terahertz Radiation from the Air Filament Produced by Few-Cycle Laser Pulses
Waveform-controlled Terahertz (THz) radiation is of great importance due to
its potential application in THz sensing and coherent control of quantum
systems. We demonstrated a novel scheme to generate waveform-controlled THz
radiation from air plasma produced when carrier-envelope-phase (CEP) stabilized
few-cycle laser pulses undergo filamentation in ambient air. We launched
CEP-stabilized 10 fs-long (~ 1.7 optical cycles) laser pulses at 1.8 {\mu}m
into air and found that the generated THz waveform can be controlled by varying
the filament length and the CEP of driving laser pulses. Calculations using the
photocurrent model and including the propagation effects well reproduce the
experimental results, and the origins of various phase shifts in the filament
are elucidated.Comment: 5pages, 5 figure
Research on the Hydraulic Pump Test System Based on AMESim
A set of hydraulic test system was designed and built to complete the performance test for pumps. Next, the simulation model of the system was built in the hydraulic simulation software AMESim, and the models of tested pump, relief valves and check valves were built by HCD library. According to National Standard JB/T 9714-1999, the necessary test items were simulated and the dynamic responses of the test system were analyzed. Simulation results show that the test system can exactly reflect the performance parameters of tested pump and meet the demand of hydraulic pump performance test. Finally, corresponding test bed was built according to the test system and verified the above simulation results. Experimental results were consistent with simulation results, which proves the feasibility of the test system
Endogenous small-noncoding RNAs and their roles in chilling response and stress acclimation in Cassava
BACKGROUND: Small noncoding RNA (sncRNA), including microRNAs (miRNAs) and endogenous small-interfering RNAs (endo-siRNAs) are key gene regulators in eukaryotes, playing critical roles in plant development and stress tolerance. Trans-acting siRNAs (ta-siRNAs), which are secondary siRNAs triggered by miRNAs, and siRNAs from natural antisense transcripts (nat-siRNAs) are two well-studied classes of endo-siRNAs. RESULTS: In order to understand sncRNAs’ roles in plant chilling response and stress acclimation, we performed a comprehensive study of miRNAs and endo-siRNAs in Cassava (Manihot esculenta), a major source of food for the world populations in tropical regions. Combining Next-Generation sequencing and computational and experimental analyses, we profiled and characterized sncRNA species and mRNA genes from the plants that experienced severe and moderate chilling stresses, that underwent further severe chilling stress after chilling acclimation at moderate stress, and that grew under the normal condition. We also included castor bean (Ricinus communis) in our study to understand conservation of sncRNAs. In addition to known miRNAs, we identified 32 (22 and 10) novel miRNAs as well as 47 (26 and 21) putative secondary siRNA-yielding and 8 (7 and 1) nat-siRNA-yielding candidate loci in Cassava and castor bean, respectively. Among the expressed sncRNAs, 114 miRNAs, 12 ta-siRNAs and 2 nat-siRNAs showed significant expression changes under chilling stresses. CONCLUSION: Systematic and computational analysis of microRNAome and experimental validation collectively showed that miRNAs, ta-siRNAs, and possibly nat-siRNAs play important roles in chilling response and chilling acclimation in Cassava by regulating stress-related pathways, e.g. Auxin signal transduction. The conservation of these sncRNA might shed lights on the role of sncRNA-mediated pathways affected by chilling stress and stress acclimation in Euphorbiaceous plants. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/1471-2164-15-634) contains supplementary material, which is available to authorized users
Magnetic reconstruction at (001) CaMnO surface
The Mn-terminated (001) surface of the stable anti-ferromagnetic insulating
phase of cubic perovskite CaMnO is found to undergo a magnetic
reconstruction consisting on a spin-flip process at surface: each Mn spin at
the surface flips to pair with that of Mn in the subsurface layer. In spite of
very little Mn-O charge transfer at surface, the surface behavior is driven by
the states due to charge redistribution. These
results, based on local spin density theory, give a double exchange like
coupling that is driven by character, not additional charge, and may have
relevance to CMR materials.Comment: 4 pages, 5 figures reference added Fig. 3 modified. Caption of Fig. 5
modifie
2DLIW-SLAM:2D LiDAR-Inertial-Wheel Odometry with Real-Time Loop Closure
Due to budgetary constraints, indoor navigation typically employs 2D LiDAR
rather than 3D LiDAR. However, the utilization of 2D LiDAR in Simultaneous
Localization And Mapping (SLAM) frequently encounters challenges related to
motion degeneracy, particularly in geometrically similar environments. To
address this problem, this paper proposes a robust, accurate, and
multi-sensor-fused 2D LiDAR SLAM system specifically designed for indoor mobile
robots. To commence, the original LiDAR data undergoes meticulous processing
through point and line extraction. Leveraging the distinctive characteristics
of indoor environments, line-line constraints are established to complement
other sensor data effectively, thereby augmenting the overall robustness and
precision of the system. Concurrently, a tightly-coupled front-end is created,
integrating data from the 2D LiDAR, IMU, and wheel odometry, thus enabling
real-time state estimation. Building upon this solid foundation, a novel global
feature point matching-based loop closure detection algorithm is proposed. This
algorithm proves highly effective in mitigating front-end accumulated errors
and ultimately constructs a globally consistent map. The experimental results
indicate that our system fully meets real-time requirements. When compared to
Cartographer, our system not only exhibits lower trajectory errors but also
demonstrates stronger robustness, particularly in degeneracy problem.Comment: This paper has been accepted by Measurement Science and Technology:
https://iopscience.iop.org/article/10.1088/1361-6501/ad3ea3/met
Experimental demonstration of a hyper-entangled ten-qubit Schr\"odinger cat state
Coherent manipulation of an increasing number of qubits for the generation of
entangled states has been an important goal and benchmark in the emerging field
of quantum information science. The multiparticle entangled states serve as
physical resources for measurement-based quantum computing and high-precision
quantum metrology. However, their experimental preparation has proved extremely
challenging. To date, entangled states up to six, eight atoms, or six photonic
qubits have been demonstrated. Here, by exploiting both the photons'
polarization and momentum degrees of freedom, we report the creation of
hyper-entangled six-, eight-, and ten-qubit Schr\"odinger cat states. We
characterize the cat states by evaluating their fidelities and detecting the
presence of genuine multi-partite entanglement. Small modifications of the
experimental setup will allow the generation of various graph states up to ten
qubits. Our method provides a shortcut to expand the effective Hilbert space,
opening up interesting applications such as quantum-enhanced super-resolving
phase measurement, graph-state generation for anyonic simulation and
topological error correction, and novel tests of nonlocality with
hyper-entanglement.Comment: 11 pages, 5 figures, comments welcom
The newly observed open-charm states in quark model
Comparing the measured properties of the newly observed open-charm states
D(2550), D(2600), D(2750), D(2760), D_{s1}(2710), D_{sJ}(2860), and
D_{sJ}(3040) with our predicted spectroscopy and strong decays in a constituent
quark model, we find that: (1) the assignment to D(2550) remains
open for its too broad width determined by experiment; (2) the D(2600) and
can be identified as the - mixtures; (3) if
the D(2760) and D(2750) are indeed the same resonance, they would be the
; otherwise, they could be assigned as the and
, respectively; (4) the could be either the
's partner or the ; and (5) both the
and interpretations for the seem likely. The
and radiative decays of these sates are also studied. Further
experimental efforts are needed to test the present quarkonium assignments for
these new open-charm states.Comment: 26 pages,7 figures, journal versio
- …
