4 research outputs found

    Treatment outcome of new pulmonary tuberculosis in Guangzhou, China 1993–2002: a register-based cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Completion of treatment for tuberculosis (TB) is of utmost priority for TB control programs. The aims of this study were to evaluate the treatment outcome of TB cases registered in Guangzhou during the period 1993–2002, and to identify factors associated with treatment success.</p> <p>Methods</p> <p>Two (of eight) districts in Guangzhou were selected randomly as objects of study and their surveillance database was analyzed to assess the treatment outcome and identify factors associated with treatment success for TB cases registered in Guangzhou. Six treatment outcome criteria were assessed based on guidelines set by the World Health Organization (WHO). Logistic regression was used to estimate risk factors for treatment outcome.</p> <p>Results</p> <p>A total of 6743 pulmonary tuberculosis cases (4903 males, 1840 females) were included in this study. The treatment success rate (including cured and complete treatment) was 88% (95%CI 87%–89%). One hundred and eight-six (2.8%) patients died and 401 (5.9%) patients defaulted treatment. In multivariate analysis, treatment success was found to be associated with young age, lack of cavitation and compliance with treatment.</p> <p>Conclusion</p> <p>The total treatment success rate in the current study was similar to the WHO target for all smear positive cases, while the failure rate and the default rate in 2002 were slightly higher. Good care of elderly patients, early diagnosis of cavitation and compliance with treatment could improve the success rate of TB treatment.</p

    Neuroprotective Strategies in Hippocampal Neurodegeneration induced by the Neurotoxicant Trimethyltin. Neurochemical Research

    No full text
    The selective vulnerability of specific neuronal subpopulations to trimethyltin (TMT), an organotin compound with neurotoxicant effects selectively involving the limbic system and especially marked in the hippocampus, makes it useful to obtain in vivo models of neurodegeneration associated with behavioural alterations, such as hyperactivity and aggression, cognitive impairment as well as temporal lobe epilepsy. TMT has been widely used to study neuronal and glial factors involved in selective neuronal death, as well as the molecular mechanisms leading to hippocampal neurodegeneration (including neuroinflammation, excitotoxicity, intracellular calcium overload, mitochondrial dysfunction and oxidative stress). It also offers a valuable instrument to study the cell-cell interactions and signalling pathways that modulate injury-induced neurogenesis, including the involvement of newly generated neurons in the possible repair processes. Since TMT appears to be a useful tool to damage the brain and study the various responses to damage, this review summarises current data from in vivo and in vitro studies on neuroprotective strategies to counteract TMT-induced neuronal death, that may be useful to elucidate the role of putative candidates for translational medical research on neurodegenerative diseases
    corecore