120 research outputs found

    Corners-based composite descriptor for shapes

    Full text link
    In this paper, a composite descriptor for shape retrieval is proposed. The composite descriptor is obtained based upon corner-points and shape region. In an earlier paper, we proposed a composite descriptor based on shape region and shape contour, however, the descriptor was not effective for all perspective and geometric transformations. Hence, we modify the composite descriptor by replacing contour features with corner-points features. The proposed descriptor is obtained from Generic FourierDescriptors (GFD) of the shape region and the GFD ofthe corner-points. We study the performance of the proposed composite descriptor. The proposed method is evaluated using Item S8 within the MPEG-7 Still Images Content Set. Experimental results show that the proposed descriptor is effective.<br /

    Coherence based histograms for shape retrieval

    Full text link
    Histograms have been used for Shape Representation and Retrieval. The drawback of the histograms method is that histograms can be same for dissimilar shapes, which renders the method less effective for retrieval of shapes. In this paper, we describe the concept of coherence. We show how coherence can be used with distance and angular histograms. We perform experiments to test the effectiveness of the proposed method. It is found that coherence improves accuracy of retrieval significantly.<br /

    Image retrieval using modified generic fourier descriptors

    Full text link
    Generic Fourier Descriptors have been used for image retrieval [12]. In this paper, we have proposed a modification to the Generic Fourier Descriptors. We have performed experiments to compare the performance of the proposed method with the standard method. Tests were performed on Set B of the MPEG-7 Still Images Content Set [13]. The experimental results show the effectiveness of the proposed method.<br /

    Angular histograms for shape retrieval

    Full text link
    Distance histograms have been used for Shape Representation and Retrieval [1][2]. In this paper, we have proposed the use of angular histograms for shape representation. We have implemented a system for conducting experiments and evaluating the effectiveness of the proposed method. The proposed method is compared with the distance histograms method. It is found that theproposed method is effective.<br /

    An enhancement to the spatial pyramid matching for image classification and retrieval

    Get PDF
    Spatial pyramid matching (SPM) is one of the widely used methods to incorporate spatial information into the image representation. Despite its effectiveness, the traditional SPM is not rotation invariant. A rotation invariant SPM has been proposed in the literature but it has many limitations regarding the effectiveness. In this paper, we investigate how to make SPM robust to rotation by addressing those limitations. In an SPM framework, an image is divided into an increasing number of partitions at different pyramid levels. In this paper, our main focus is on how to partition images in such a way that the resulting structure can deal with image-level rotations. To do that, we investigate three concentric ring partitioning schemes. Apart from image partitioning, another important component of the SPM framework is a weight function. To apportion the contribution of each pyramid level to the final matching between two images, the weight function is needed. In this paper, we propose a new weight function which is suitable for the rotation-invariant SPM structure. Experiments based on image classification and retrieval are performed on five image databases. The detailed result analysis shows that we are successful in enhancing the effectiveness of SPM for image classification and retrieval. © 2013 IEEE

    On the Impact of Granularity of Space-Based Urban CO2 Emissions in Urban Atmospheric Inversions: A Case Study for Indianapolis, IN

    Get PDF
    Quantifying greenhouse gas (GHG) emissions from cities is a key challenge towards effective emissions management. An inversion analysis from the INdianapolis FLUX experiment (INFLUX) project, as the first of its kind, has achieved a top-down emission estimate for a single city using CO2 data collected by the dense tower network deployed across the city. However, city-level emission data, used as a priori emissions, are also a key component in the atmospheric inversion framework. Currently, fine-grained emission inventories (EIs) able to resolve GHG city emissions at high spatial resolution, are only available for few major cities across the globe. Following the INFLUX inversion case with a global 1x1 km ODIAC fossil fuel CO2 emission dataset, we further improved the ODIAC emission field and examined its utility as a prior for the city scale inversion. We disaggregated the 1x1 km ODIAC non-point source emissions using geospatial datasets such as the global road network data and satellite-data driven surface imperviousness data to a 3030 m resolution. We assessed the impact of the improved emission field on the inversion result, relative to priors in previous studies (Hestia and ODIAC). The posterior total emission estimate (5.1 MtC/yr) remains statistically similar to the previous estimate with ODIAC (5.3 MtC/yr). However, the distribution of the flux corrections was very close to those of Hestia inversion and the model-observation mismatches were significantly reduced both in forward and inverse runs, even without hourly temporal changes in emissions. EIs reported by cities often do not have estimates of spatial extents. Thus, emission disaggregation is a required step when verifying those reported emissions using atmospheric models. Our approach offers gridded emission estimates for global cities that could serves as a prior for inversion, even without locally reported EIs in a systematic way to support city-level Measuring, Reporting and Verification (MRV) practice implementation

    Aboveground Forest Biomass Estimation with Landsat and LiDAR Data and Uncertainty Analysis of the Estimates

    Get PDF
    Landsat Thematic mapper (TM) image has long been the dominate data source, and recently LiDAR has offered an important new structural data stream for forest biomass estimations. On the other hand, forest biomass uncertainty analysis research has only recently obtained sufficient attention due to the difficulty in collecting reference data. This paper provides a brief overview of current forest biomass estimation methods using both TM and LiDAR data. A case study is then presented that demonstrates the forest biomass estimation methods and uncertainty analysis. Results indicate that Landsat TM data can provide adequate biomass estimates for secondary succession but are not suitable for mature forest biomass estimates due to data saturation problems. LiDAR can overcome TM’s shortcoming providing better biomass estimation performance but has not been extensively applied in practice due to data availability constraints. The uncertainty analysis indicates that various sources affect the performance of forest biomass/carbon estimation. With that said, the clear dominate sources of uncertainty are the variation of input sample plot data and data saturation problem related to optical sensors. A possible solution to increasing the confidence in forest biomass estimates is to integrate the strengths of multisensor data
    • …
    corecore