2,594 research outputs found

    MIMO nonlinear PID predictive controller

    Get PDF
    A class of nonlinear generalised predictive controllers (NGPC) is derived for multi-input multi-output (MIMO) nonlinear systems with offset or steady-state response error. The MIMO composite controller consists of an optimal NGPC and a nonlinear disturbance observer. The design of the nonlinear disturbance observer to estimate the offset is particularly simple, as is the associated proof of overall nonlinear closed-loop system stability. Moreover, the transient error response of the disturbance observer can be arbitrarily specified by simple design parameters. Very satisfactory performance of the proposed MIMO nonlinear predictive controller is demonstrated for a three-link nonlinear robotic manipulator example

    Digital image correlation approach to cracking and decohesion in a brittle coating/ductile substrate system

    Get PDF
    By using a digital image correlation technique, the full/local field strain in a brittle coating/ductile substrate system during tension has been successfully monitored. One of the most important experimental results indicates that the distribution of interfacial shear stress in the segmented coating is antisymmetric about the center, which clarifies several controversial assumptions introduced in theoretical models. Two key mechanical properties of thermal barrier coatings, fracture strength in coating and interfacial adhesion strength, were determined as 35.0 ± 4.6 and 14.1 ± 3.2 MPa, respectively, which are consistent with available experimental data

    Preparation of spin squeezed atomic states by optical phase shift measurement

    Full text link
    In this paper we present a state vector analysis of the generation of atomic spin squeezing by measurement of an optical phase shift. The frequency resolution is improved when a spin squeezed sample is used for spectroscopy in place of an uncorrelated sample. When light is transmitted through an atomic sample some photons will be scattered out of the incident beam, and this has a destructive effect on the squeezing. We present quantitative studies for three limiting cases: the case of a sample of atoms of size smaller than the optical wavelength, the case of a large dilute sample and the case of a large dense sample.Comment: 18 page

    Impurity state in Haldane gap for S=1 Heisenberg antiferromagnetic chain with bond doping

    Full text link
    Using a new impurity density matrix renormalization group scheme, we establish a reliable picture of how the low lying energy levels of a S=1S=1 Heisenberg antiferromagnetic chain change {\it quantitatively} upon bond doping. A new impurity state gradually occurs in the Haldane gap as J′<JJ' < J, while it appears only if J′/J>γcJ'/J>\gamma_c with 1/γc=0.7081/\gamma_c=0.708 as J′>JJ'>J. The system is non-perturbative as 1≤J′/J≤γc1\leq J'/J\leq\gamma_c. This explains the appearance of a new state in the Haldane gap in a recent experiment on Y2−x_{2-x}Cax_xBaNiO5_5 [J.F. DiTusa, et al., Phys. Rev. Lett. 73 1857(1994)].Comment: 4 pages of uuencoded gzip'd postscrip

    Cosmological constraints on the generalized holographic dark energy

    Full text link
    We use the Markov ChainMonte Carlo method to investigate global constraints on the generalized holographic (GH) dark energy with flat and non-flat universe from the current observed data: the Union2 dataset of type supernovae Ia (SNIa), high-redshift Gamma-Ray Bursts (GRBs), the observational Hubble data (OHD), the cluster X-ray gas mass fraction, the baryon acoustic oscillation (BAO), and the cosmic microwave background (CMB) data. The most stringent constraints on the GH model parameter are obtained. In addition, it is found that the equation of state for this generalized holographic dark energy can cross over the phantom boundary wde =-1.Comment: 14 pages, 5 figures. arXiv admin note: significant text overlap with arXiv:1105.186

    Combined constraints on modified Chaplygin gas model from cosmological observed data: Markov Chain Monte Carlo approach

    Full text link
    We use the Markov Chain Monte Carlo method to investigate a global constraints on the modified Chaplygin gas (MCG) model as the unification of dark matter and dark energy from the latest observational data: the Union2 dataset of type supernovae Ia (SNIa), the observational Hubble data (OHD), the cluster X-ray gas mass fraction, the baryon acoustic oscillation (BAO), and the cosmic microwave background (CMB) data. In a flat universe, the constraint results for MCG model are, Ωbh2=0.02263−0.00162+0.00184\Omega_{b}h^{2}=0.02263^{+0.00184}_{-0.00162} (1σ1\sigma) −0.00195+0.00213^{+0.00213}_{-0.00195} (2σ)(2\sigma), Bs=0.7788−0.0723+0.0736B_{s}=0.7788^{+0.0736}_{-0.0723} (1σ1\sigma) −0.0904+0.0918^{+0.0918}_{-0.0904} (2σ)(2\sigma), α=0.1079−0.2539+0.3397\alpha=0.1079^{+0.3397}_{-0.2539} (1σ1\sigma) −0.2911+0.4678^{+0.4678}_{-0.2911} (2σ)(2\sigma), B=0.00189−0.00756+0.00583B=0.00189^{+0.00583}_{-0.00756} (1σ1\sigma) −0.00915+0.00660^{+0.00660}_{-0.00915} (2σ)(2\sigma), and H0=70.711−3.142+4.188H_{0}=70.711^{+4.188}_{-3.142} (1σ1\sigma) −4.149+5.281^{+5.281}_{-4.149} (2σ)(2\sigma).Comment: 12 pages, 1figur

    Defect and anisotropic gap induced quasi-one-dimensional modulation of local density of states in YBa2_2Cu3_3O7−δ_{7-\delta}

    Full text link
    Motivated by recent angle-resolved photoemission spectroscopy (ARPES) measurement that superconducting YBa2_2Cu3_3O7−δ_{7-\delta} (YBCO) exhibits a dx2−y2+sd_{x^2-y^2} + s-symmetry gap, we show possible quasi-one-dimensional modulations of local density of states in YBCO. These aniostropic gap and defect induced stripe structures are most conspicuous at higher biases and arise due to the nesting effect associated with a Fermi liquid. Observation of these spectra by scanning tunneling microscopy (STM) would unify the picture among STM, ARPES, and inelastic neutron scattering for YBCO.Comment: 4 pages, 4 figure

    Wavefunction topology of two-dimensional time-reversal symmetric superconductors

    Full text link
    We discuss the topology of the wavefunctions of two-dimensional time-reversal symmetric superconductors. We consider (a) the planar state, (b) a system with broken up-down reflection symmetry, and (c) a system with general spin-orbit interaction. We show explicitly how the relative sign of the order parameter on the two Fermi surfaces affects this topology, and clarify the meaning of the Z2Z_2 classification for these topological states.Comment: only the Introduction has been modified from v

    Cold atoms in videotape micro-traps

    Full text link
    We describe an array of microscopic atom traps formed by a pattern of magnetisation on a piece of videotape. We describe the way in which cold atoms are loaded into one of these micro-traps and how the trapped atom cloud is used to explore the properties of the trap. Evaporative cooling in the micro-trap down to a temperature of 1 microkelvin allows us to probe the smoothness of the trapping potential and reveals some inhomogeneity produced by the magnetic film. We discuss future prospects for atom chips based on microscopic permanent-magnet structures.Comment: Submitted for EPJD topical issue "Atom chips: manipulating atoms and molecules with microfabricated structures
    • …
    corecore