41 research outputs found

    NKT Cell Stimulation with α-Galactosylceramide Results in a Block of Th17 Differentiation after Intranasal Immunization in Mice

    Get PDF
    In a previous study we demonstrated that intranasal (i.n.) vaccination promotes a Th17 biased immune response. Here, we show that co-administration of a pegylated derivative of α-galactosylceramide (αGCPEG) with an antigen, even in the presence of Th17-polarizing compounds, results in a strong blocking of Th17 differentiation. Additional studies demonstrated that this phenomenon is specifically dependent on soluble factors, like IL-4 and IFNγ, which are produced by NKT cells. Even NK1.1 negative NKT cells, which by themselves produce IL-17A, are able to block Th17 differentiation. It follows that the use of αGCPEG as adjuvant would enable to tailor Th17 responses, according to the specific clinical needs. This knowledge expands our understanding of the role played by NKT cells in overall control of the cytokine microenvironment, as well as in the overall shaping of adaptive immune responses

    Abnormal Changes in NKT Cells, the IGF-1 Axis, and Liver Pathology in an Animal Model of ALS

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a rapidly progressing fatal neurodegenerative disorder characterized by the selective death of motor neurons (MN) in the spinal cord, and is associated with local neuroinflammation. Circulating CD4+ T cells are required for controlling the local detrimental inflammation in neurodegenerative diseases, and for supporting neuronal survival, including that of MN. T-cell deficiency increases neuronal loss, while boosting T cell levels reduces it. Here, we show that in the mutant superoxide dismutase 1 G93A (mSOD1) mouse model of ALS, the levels of natural killer T (NKT) cells increased dramatically, and T-cell distribution was altered both in lymphoid organs and in the spinal cord relative to wild-type mice. The most significant elevation of NKT cells was observed in the liver, concomitant with organ atrophy. Hepatic expression levels of insulin-like growth factor (IGF)-1 decreased, while the expression of IGF binding protein (IGFBP)-1 was augmented by more than 20-fold in mSOD1 mice relative to wild-type animals. Moreover, hepatic lymphocytes of pre-symptomatic mSOD1 mice were found to secrete significantly higher levels of cytokines when stimulated with an NKT ligand, ex-vivo. Immunomodulation of NKT cells using an analogue of α-galactosyl ceramide (α-GalCer), in a specific regimen, diminished the number of these cells in the periphery, and induced recruitment of T cells into the affected spinal cord, leading to a modest but significant prolongation of life span of mSOD1 mice. These results identify NKT cells as potential players in ALS, and the liver as an additional site of major pathology in this disease, thereby emphasizing that ALS is not only a non-cell autonomous, but a non-tissue autonomous disease, as well. Moreover, the results suggest potential new therapeutic targets such as the liver for immunomodulatory intervention for modifying the disease, in addition to MN-based neuroprotection and systemic treatments aimed at reducing oxidative stress

    A causal account of the brain network computations underlying strategic social behavior

    Get PDF
    During competitive interactions, humans have to estimate the impact of their own actions on their opponent's strategy. Here we provide evidence that neural computations in the right temporoparietal junction (rTPJ) and interconnected structures are causally involved in this process. By combining inhibitory continuous theta-burst transcranial magnetic stimulation with model-based functional MRI, we show that disrupting neural excitability in the rTPJ reduces behavioral and neural indices of mentalizing-related computations, as well as functional connectivity of the rTPJ with ventral and dorsal parts of the medial prefrontal cortex. These results provide a causal demonstration that neural computations instantiated in the rTPJ are neurobiological prerequisites for the ability to integrate opponent beliefs into strategic choice, through system-level interaction within the valuation and mentalizing networks

    Invariant NKT cells regulate the CD8 T cell response during Theiler's virus infection.

    Get PDF
    International audienceInvariant NKT cells are innate lymphocytes with a broad tissue distribution. Here we demonstrate that iNKT cells reside in the central nervous system (CNS) in the absence of inflammation. Their presence in the CNS dramatically augments following inoculation of C57Bl/6 mice with the neurotropic Theiler's murine encephalomyelitis virus (TMEV). At the peak of inflammation the cellular infiltrate comprises 45,000 iNKT cells for 1250 CD8 T cells specific for the immunodominant TMEV epitope. To study the interaction between these two T cell subsets, we infected both iNKT cell deficient Jα18(-/-) mice and iNKT cell enriched Vα14 transgenic mice with TMEV. The CD8 T cell response readily cleared TMEV infection in the iNKT cell deficient mice. However, in the iNKT cell enriched mice TMEV infection persisted and was associated with significant mortality. This was caused by the inhibition of the CD8 T cell response in the cervical lymph nodes and spleen after T cell priming. Taken together we demonstrate that iNKT cells reside in the CNS in the absence of inflammation and that their enrichment is associated with the inhibition of the anti-viral CD8 T cell response and an augmented mortality during acute encephalomyelitis
    corecore