70 research outputs found

    An integrated network visualization framework towards metabolic engineering applications

    Get PDF
    Background Over the last years, several methods for the phenotype simulation of microorganisms, under specified genetic and environmental conditions have been proposed, in the context of Metabolic Engineering (ME). These methods provided insight on the functioning of microbial metabolism and played a key role in the design of genetic modifications that can lead to strains of industrial interest. On the other hand, in the context of Systems Biology research, biological network visualization has reinforced its role as a core tool in understanding biological processes. However, it has been scarcely used to foster ME related methods, in spite of the acknowledged potential. Results In this work, an open-source software that aims to fill the gap between ME and metabolic network visualization is proposed, in the form of a plugin to the OptFlux ME platform. The framework is based on an abstract layer, where the network is represented as a bipartite graph containing minimal information about the underlying entities and their desired relative placement. The framework provides input/output support for networks specified in standard formats, such as XGMML, SBGN or SBML, providing a connection to genome-scale metabolic models. An user-interface makes it possible to edit, manipulate and query nodes in the network, providing tools to visualize diverse effects, including visual filters and aspect changing (e.g. colors, shapes and sizes). These tools are particularly interesting for ME, since they allow overlaying phenotype simulation results or elementary flux modes over the networks. Conclusions The framework and its source code are freely available, together with documentation and other resources, being illustrated with well documented case studies.This work is partially funded by ERDF - European Regional Development Fund through the COMPETE Programme (operational programme for competitiveness) and by National Funds through the FCT (Portuguese Foundation for Science and Technology) within project ref. COMPETE FCOMP-01-0124-FEDER-015079 and the FCT Strategic Project PEst-OE/EQB/LA0023/2013. The work of PV is funded by PhD grant ref. SFRH/BDE/51442/2011

    Mechanical properties measured by Atomic Force Microscopy define health biomarkers in ageing C. elegans

    Get PDF
    Genetic and environmental factors are key drivers regulating organismal lifespan but how these impact healthspan is less well understood. Techniques capturing biomechanical properties of tissues on a nano-scale level are providing new insights into disease mechanisms. Here, we apply Atomic Force Microscopy (AFM) to quantitatively measure the change in biomechanical properties associated with ageing Caenorhabditis elegans in addition to capturing high-resolution topographical images of cuticle senescence. We show that distinct dietary restriction regimes and genetic pathways that increase lifespan lead to radically different healthspan outcomes. Hence, our data support the view that prolonged lifespan does not always coincide with extended healthspan. Importantly, we identify the insulin signalling pathway in C. elegans and interventions altering bacterial physiology as increasing both lifespan and healthspan. Overall, AFM provides a highly sensitive technique to measure organismal biomechanical fitness and delivers an approach to screen for health-improving conditions, an essential step towards healthy ageing

    A quantitative genome-wide RNAi screen in C. elegans for antifungal innate immunity genes

    Full text link

    Robustheit und Plastizität

    No full text
    • …
    corecore