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Abstract

Background: We have previously shown that childhood-onset rheumatic diseases show aberrant patterns of gene
expression that reflect pathology-associated co-expression networks. In this study, we used novel computational
approaches to examine how disease-associated networks are altered in one of the most common rheumatic
diseases of childhood, juvenile idiopathic arthritis (JIA).

Methods: Using whole blood gene expression profiles derived from children in a pediatric rheumatology clinical
trial, we used a network approach to understanding the impact of therapy and the underlying biology of response/
non-response to therapy.

Results: We demonstrate that therapy for JIA is associated with extensive re-ordering of gene expression networks,
even in children who respond inadequately to therapy. Furthermore, we observe distinct differences in the evolution
of specific network properties when we compare children who have been treated successfully with those who have
inadequate treatment response.

Conclusions: Despite the inherent noisiness of whole blood gene expression data, our findings demonstrate how
therapeutic response might be mapped and understood in pathologically informative cells in a broad range of human
inflammatory diseases.

Background
While they are typically described and studied discretely
and in isolation, the multiple components of a cell
(genes, proteins, metabolites, RNA molecules and their
splice variants, and so on) are highly inter-connected
and interactive. One of the most interesting recent dis-
coveries in modern biology, and one that has significant
implications for the understanding of human disease, is
the fact that the hundreds of thousands of individual
cellular components can be described and visualized as
interactive networks (for example, [1–4]). Furthermore,
these networks share structural characteristics that
frequently include ‘scale-free’ hub and node structures
[5, 6] and specific, functionally related modules [7–9].
We [10] and others [11, 12] have proposed that human

illnesses emerge as a consequence of perturbation of
these networks, whether from genetic variation, direct
external stimuli (for example, toxins, infectious agents),
or via epigenetic changes that accumulate over genera-
tions; these three categories, of course, are not mutually
exclusive. There is ample evidence for this viewpoint in
model organisms; physiologic perturbation of yeast, for
example, results in extensive remodeling of interaction
networks in such a way that the vast majority of interac-
tions seen in the resting state are no longer seen after
perturbation [13].
Juvenile idiopathic arthritis (JIA) is a complex trait

characterized by known genetic susceptibility [14] and
presumed gene-environment interactions [15]. The hall-
mark pathology of JIA is the presence of inflamed and
hypertrophied synovium in one or more joints, charac-
teristically accompanied by morning stiffness and limited
range of motion [16]. The illnesses classified under the
nosologic entity ‘JIA’ have several different categories,
each of which is considered to be distinct both pheno-
typically and immunogenetically. Two of the major
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categories, polyarticular JIA (rheumatoid factor negative
and rheumatoid factor positive), resemble adult rheuma-
toid arthritis [17]. As with adult rheumatoid disease, the
causes(s) of polyarticular JIA are unknown and therapy
remains largely empiric. However, effective agents are
available and prolonged periods of normal function
without disease activity are now possible for many chil-
dren with this disease [18].
Previous work by our group has demonstrated the

presence of complex gene co-expression networks in
JIA and other pediatric rheumatic diseases [10]. These
networks involve cells of both the innate [19] and
adaptive [20] immune systems. More recently, Stevens
et al. [21] used genetic association and publicly avail-
able gene expression data to elucidate complex network
structures in JIA. However, these analyses, including
our own, have not attempted to examine the complex,
dynamic changes to network properties and structure
that likely underlie disease progression or therapeutic
response.
The Trial of Early Aggressive Therapy in JIA (TREAT)

study represents a once-in-a-generation opportunity to
observe therapeutic response in polyarticular JIA in a
controlled setting using agents of known efficacy. The
TREAT study was an NIH-funded clinical trial [22] that
compared two aggressive therapeutic regimens for treat-
ment of newly diagnosed, polyarticular JIA. One arm of
the study used subcutaneous methotrexate (MTX) at
0.5 mg/kg/week as an initial therapy, while the other
used a combined regimen of MTX, the TNF inhibitor,
etanercept (ET), in addition to brief oral prednisone. As
part of the TREAT trial, whole blood was collected for
RNA expression studies at specific time points during
the course of the first year of therapy. The TREAT study
therefore represents an unprecedented opportunity to
observe and describe the dynamics of therapeutic
response in a chronic inflammatory disease of humans
at the molecular level.
The study undertaken here was directed at determin-

ing whether mathematical methods used in social net-
work analysis may assist in characterizing the pathologic
gene expression networks that may underlie JIA, and to
determine whether and how effective therapy perturbs
those networks. At the same time, and equally import-
ant, we aimed to describe the alterations in a network
structure that represent a failed ‘re-wiring’, that is, treat-
ment failure. We report here the results of these ana-
lyses from longitudinal samples obtained from the
TREAT study subjects.

Methods
Patients
Eighty-five patients were recruited into the TREAT
trial between October 2007 and November 2009 [22].

All children fit international criteria for polyarticular
onset JIA [23]. Sixty-two parents of these children
gave written informed consent for providing these
samples for translational uses. Approval for use of the
specimens was given by the TREAT study oversight
committee. The patients submitting samples for this
current study consisted of 19 boys and 45 girls aged
2 to 14 years. Of the boys, four were rheumatoid fac-
tor (RF) positive; 17 of the girls were RF positive. At
the time of enrollment (month 0), prior to treatment,
2.5 mL of blood was collected in a PAXgene tube
(PreAnalytiX GmbH, Hilden, Germany). Samples were
stored at –80 °C. A summary of patient characteris-
tics is shown in Table 1. Patients were randomly
assigned to one of two blinded aggressive treatment
arms of the study. Arm 1 (MTX) consisted of MTX
0.5 mg/kg/week SQ (40 mg max) plus placebo
etanercept SQ weekly and placebo oral prednisolone
tapered to zero by 17 weeks. Arm 2 (MEP) consisted
of MTX 0.5 mg/kg/week SQ plus etanercept 0.8 mg/
kg/week SQ (50 mg max) and oral prednisolone
(60 mg max) for 16 weeks. At 4 months, those
patients not achieving an ACR pediatric 70 improvement
from baseline were treated (or retreated) with open label
MEP. At 6 months, those patients not achieving clinical
inactive disease were changed to open label MEP treat-
ment, if they were not already on it. Further specimens
were collected at subsequent visits at 4, 6, and 12 months
after enrollment. These samples are hereafter referred to
as m0, m4, m6, and m12.
Disease activity was assessed using criteria devel-

oped by Wallace et al. [24]. Children were assessed
to have active disease (AD) if they had synovitis in at
least one joint at the time the sample was taken. For
children to be assessed to have inactive disease (ID),
they were required to have: zero joints with active
arthritis, no fever, rash, serositis, splenomegaly or
generalized lymphadenopathy attributable to JIA, no
active uveitis, a normal ESR in the laboratory where
tested, and a physician’s global assessment of disease
activity score of 0 (0 being best possible score).

Table 1 A summary of patient characteristics

Girls (n) 45

Boys (n) 19

Age range, 2–7 years 12

Age range, 7–12 years 26

Age range, 12–17 years 26

Age, mean ± SD 10.99 ± 3.998

RF positive (n) 21

ANAs positive (n) 23
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Healthy control samples
Controls consisted of eight healthy girls and 11 healthy
boys between the ages of 7 and 13 years that were
recruited from the OU Children’s Physicians General
Pediatrics clinic. The protocol for obtaining these speci-
mens was approved by the University of Oklahoma IRB
(#13205). Anesthesia for the phlebotomy was provided
using topical lidocaine/prilocaine solution. These sam-
ples are hereafter referred to as HC.

RNA processing
RNA was purified from whole blood PAXgene specimens
using a PAXgene Blood RNA kit (Qiagen, Valencia, CA,
USA) as recommended by the manufacturer, including a
DNAse (Qiagen) step to remove genomic DNA. Globin
transcripts, which reduce labeling efficiency of whole
blood cell RNA and decrease signal-to-noise ratios on
microarrays [25] were reduced using GLOBINclear-
Human (Ambion, Austin, TX, USA). Final RNA prepara-
tions were suspended in RNase-free water, quantified
spectrophotometrically, and analyzed for RNA integrity by
capillary gel electrophoresis (Agilent 2100 Bioanalyzer;
Agilent Technologies, Palo Alto, CA, USA).

Microarray analysis
Data analysis was performed on microarray data whose
preliminary results we have previously reported from the
standpoint of biomarker development [26]. cRNA was
produced from reverse transcribed cDNA using the Illu-
mina® TotalPrep RNA Amplification Kit (Ambion, Inc.,
Austin, TX, USA), hybridized to Illumina WG-6 v3 or
Illumina HT-12 v4 human whole genome microarrays,
and stained according to the manufacturer’s directions.
Array hybridizations were undertaken in three separate
batches. The first batch consisted of the 19 healthy con-
trols, 26 m0 samples, two m4 samples, and one m12
sample hybridized on Illumina WG-6 v3 arrays. The sec-
ond batch consisted of the remaining 147 patient sam-
ples from the main study hybridized to Illumina HT-12
v4 arrays. The final independent cohort of OK samples
was hybridized on Illumina WG-6 v3 slides. cRNA prep-
aration and hybridizations of the second and third
batches were carried 12 months subsequent to the ana-
lysis of the first batch. Microarray data were validated by
quantitative rtPCR on an independent cohort of
untreated JIA patients, as previously reported in [26].

Analysis of differential gene expression
All statistical analyses were carried out in R [27]. To
facilitate statistical analyses relative to healthy controls,
it was necessary to combine data from different
hybridization batches. Due to the difference in the
microarrays it was necessary to create combined datasets
using only those probes that were present on both array

formats. Illumina probe IDs were used to identify 39,426
common probes. Datasets were variance stabilized and
normalized using robust spline normalization via the
lumi package [28, 29]. Raw and normalized data were
submitted to the Gene Expression Omnibus (Series
GSE55319). Batch effects were removed using the ComBat
algorithm in the sva package [30]. Briefly, ComBat em-
ploys a parametric empirical Bayes approach to estimate
scaling parameters for mean and variance of expression
for each gene to compensate for systematic batch effects.
The method is designed to be effective for relatively small
studies and robust to outliers and has been shown to be
more effective than other commonly used algorithms such
as distance-weighted discrimination or surrogate variable
analysis [31]. Prior to statistical analysis, non-responding
probes were filtered out of the datasets using the detection
P value provided by the Illumina quality control metrics
to eliminate probes not responding at higher than back-
ground levels. Analysis of differential gene expression
between patients and controls was performed by fitting a
linear model to the expression data using the limma pack-
age [32, 33]. False discovery rate (FDR) was estimated
using the method described by Benjamini and Hochberg
[33]. Statistical significance of gene expression was deter-
mined at FDR ≤0.05. Validation of gene array analysis was
accomplished from an independent cohort of children
with JIA using real-time, quantitative rtPCR for selected
genes. These data have been reported elsewhere [26].

Dynamic gene co-expression network construction
From more than 39,000 measured genes in our JIA
microarray gene expression set, we selected 2,000 genes
that had the smallest P values (via t-test, where the P
value is 1.75 e-47) across the patient and control groups.
While this cutoff is arbitrary, it specifically selects those
genes whose expression values best distinguish children
with disease from healthy children. The process for con-
structing the gene co-expression network was as follows:
(1) calculation of the correlation between each gene pair
via Pearson correlation coefficients; (2) after pair-wise
correlation was calculated, we defined a threshold to es-
tablish the pair-wise gene relationships. Only gene pairs
that had correlation values larger than the threshold
were considered as having an interaction. We chose the
top 10 % of gene pairs having the highest correlation
coefficients. This approach allows us to transform the
continuous matrix data into discrete network data.
The rule for selecting the interactions was as fol-

lows: on the one hand, we wanted the constructed
gene co-expression networks to be able to display
characteristics of scale-free networks, as demonstrated
by the previous work [34, 35]; on the other hand, the
constructed networks were required to be connected
(that is, demonstrate a path connecting each node
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pair). Note that this is the general method for con-
structing gene co-expression networks [36, 37].
We defined the problem of characterizing the evolu-

tionary life of the functional modules in dynamic gene
co-expression networks in the following way. At a par-
ticular timestamp i, we can detect a set of functional

modules, denoted as Ci ¼ Ci
1;C

i
2;…;Ci

ki

n o
; from the

dynamic gene co-expression network Wi. Note that
there may be overlapping between modules generated by
this clustering method. We defined five different evolu-
tionary events that are related to functional module
changes: form, dissolve, continue, split, and merge (as
shown in Fig. 1). These key evolutionary events cover
the evolution of functional modules and can be further
formulated as a set of rules which are described below.
Given a module Cx

i from i-th timestamp, the metric
which tracks the closest module that has the highest
similarity with Cx

i at (i + 1)-th timestamp is defined as:

track Ci
x; iþ 1

� � ¼ Ciþ1
y if f

Ciþ1
y ¼ argmaxCiþ1

z ∈Ciþ1

V i
x∩V

iþ1
z

�� ��
max V i

x ;j jV iþ1
z

�� ��� �
8<
:

9=
;≥α;

where Vx
i is the set of proteins of Cx

i , and the overlap
threshold α defines whether two modules are matched
in a given overlap ratio, which is also used in the

definitions of evolutionary events below. So this module
similarity measures the optimal matching module for Cx

i

at (i + 1)-th timestamp. If none of the modules in Ci+1

has an overlap ratio larger than α, then return ∅ (∅
denotes an empty matching result).

Form
A particular functional module Cx

i is marked as having
formed if it did not exist in the previous timestamp. To
be more specific, a form indicates that it is the first time
a set of genes for proteins that are grouped together by
common functionality; some examples of first formed
modules C1

1, C2
1, and C4

2 are shown in Fig. 2. Thus, mod-
ule Cx

i is formed in the i-th timestamp iff:

track Ci
x; i−1

� � ¼ ϕ

Dissolve
A dissolve occurs for a particular functional module Cx

i

if no similar module exists in the next timestamp. Spe-
cifically, a dissolve indicates that it is the last time a set
of proteins are grouped together to perform some func-
tion, and an example of module C3

1 is shown in Fig. 2.
Formally, a module Cx

i in the i-th timestamp is defined
as dissolve iff:

Fig. 1 Examples of five evolutionary events: form, dissolve, survive, split, and merge are displayed. a Form: a community in timestamp i-th survives
until the i + 1-th timestamp. b Split: a community in timestamp i-th splits into several communities in i + 1-th. c Merge: several communities in
timestamp i-th timestamp merge into one community in i + 1-th timestamp. d Dissolve: a community in timestamp i-th disbands in the i + 1-th
timestamp. e Form: a community does not exist in i-th timestamp appear in i + 1-th timestamp
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track Ci
x; i−1

� � ¼ ϕ

Continue
Modules are designated as continuing if there is a
particular functional module Cy

i + 1 detected in time-
stamp i + 1 that is close to a module Cx

i in the previous
timestamp i-th. We then say Cy

i + 1 is the continuation
of Cx

i in the next timestamp. It can also be considered as
a module which continues its existence in the consecutive
timestamps. In Fig. 2, module C3

2 is the continuation of
module C2

1. Formally, a module Cx
i in the i-th timestamp

continues its existence to the (i + 1)-th timestamp iff:

∃Ciþ1
y ∈Ciþ1 track Ci

x; iþ 1
� � ¼ Ciþ1

y

Split
If a particular functional module Cx

i in i-th timestamp is
matched to a set of modules in the coming i + 1-th time-
stamp then we say Cx

i is split. For example, in Fig. 2,
module C1

1 is split into two modules – C1
2 and C2

2 in the
next timestamp. Formally, a module Cx

i in the i-th time-
stamp is split into a set of modules C1

i + 1, C2
i + 1, …, Ck

i +

1 in the (i + 1)-th timestamp iff:

∃Ciþ1
� ¼ Ciþ1

1 ;Ciþ1
2 ;…;Ciþ1

k

� �
⊆Ciþ1 :

∀Ciþ1
y ∈Ciþ1

� :
V i
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y
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���
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y

���
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Merge
If a particular functional module Cx

i + 1 in (i + 1)-th time-
stamp is matched to a set of modules C*

i = {C1
i , C2

i , …,
Ck
i } in the previous i-th timestamp then we say Cx

i + 1 is
merged from C1

i , C2
1, …, Ck

i , and C*
i Ci. For example, in

Fig. 2, module C2
3 is merged from three modules C2

2, C3
2,

and C4
2 in the previous timestamp. Formally, a set of

modules Ci
1;C

1
2;…;C1

k in the i-th timestamp is merged
into a module Cx

i + 1 in the (i + 1)-th timestamp iff:

∀Ci
y∈C

1
� :

V i
y∩V

iþ1
x

���
���

V i
y

���
���

≥α:

Functional module strength progression analysis
Besides detecting the evolutionary events of functional
modules, tracking the temporal progression of these
functional modules may also provide significant insights
into the disease or mechanisms of therapeutic response.
In the field of data mining, community (in our case,
module) analysis in dynamic networks has recently
attracted attention [38–40]. However, the module infor-
mation provided by current approaches is limited; these
existing methods cannot provide a complete view of
how gene modules evolve through the entirety of a spe-
cific observation period.
Aiming to track the temporal changes of gene modules

at each timestamp, we propose a novel measure called
module strength analysis. We propose that a functional
module demonstrates high strength if it has more in-
ternal interactions connecting the molecules inside it
than the external interactions connecting it to the rest of
the network. Dense internal interactions and weak exter-
nal interactions to the outside suggest that this func-
tional module will have low risk of change (current
gene(s) leaving or/and new gene(s) joining), which may
influence the biological functions of this module. For
example, if one gene cluster has high strength in a
particular stage, we believe that this gene cluster is
active in this stage; otherwise, the function of this
gene cluster may be depressed. This assumption is
demonstrated in Fig. 3.

Fig. 2 An example of functional module evolution over three timestamps. Five evolutionary events including form, dissolve, survive, split, and
merge are demonstrated
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In the biological domain, interactions between genes
change gradually in dynamic gene co-expression net-
works. Thus the strength of gene modules also changes.
For example, it has been reported that the expression of
key genes change [41] as the cancer progresses. In such
cases, the corresponding gene modules’ strength also
changes. Discovering the strengths of gene modules
throughout a specific disease progression (or therapeutic
response, as in our case) may provide useful clues to the
underlying biology. For our specific disease, JIA, if a
gene module is strong at diagnosis, such a module may
be monitored through treatment to determine whether
module strengthening or weakening is associated with
disease response or refractoriness.
To precisely estimate each functional module’s

strength, we considered the following: (1) when calculat-
ing the strength of a specific module corresponding to a
particular time point, we should also consider the histor-
ical networks, that is, those in the previous time stamp.
Biological networks usually evolve gradually and may be
influenced by the fact that biological samples (including
those used here) may contain mixed populations of cells.
At the same time, experimental design or measurement
errors also contribute to the ‘noisiness’ of gene expres-
sion data generated from hybridization-based gene
microarrays [42]. Thus, community strength determined
from only a single source, sample, or time point is diffi-
cult to assess precisely. In addition, we believe that, in
the setting of chronic illness, community strength will
change gradually instead of dramatically. Because re-
sponse to therapy in juvenile arthritis occurs gradually
(over weeks or months), we expect a certain level of
temporal smoothness between module strengths in suc-
cessive snapshots; such an assumption is both biologic-
ally plausible and allows us to filter out ‘noise’ that is
inherent in whole blood microarray data. Therefore, we
used both the current and previous biological networks
to calculate the temporal community strength. (2) Since
it is hard to determine whether a module is strong with-
out comparing it with other modules, we normalized the

strengths of all modules. Finally (3), the overall strength
of all modules at each timestamp was also estimated.
In our previous work on social networks [43], we pro-

posed an integrated optimization framework that con-
ducts community (module) strength detection across
snapshots by taking all the requirements mentioned
above into consideration. To be more specific, we first
identify the temporal functional modules at each time-
stamp via a clustering method, and all functional mod-
ules ascertained by this method are then collected into a
candidate set. Next, the strength of each detected mod-
ule corresponding to each specific snapshot is calculated
through solving an objective function. Using this ap-
proach, we estimated each functional module’s strength
over the time course of treatment response in JIA.

Analysis of dynamic network changes
From the whole blood gene expression profiles from
children with JIA enrolled in the NIH-funded study, we
undertook two separate analyses, one of which was
strategy-based and the other of which was time-based.
For the strategy-based analysis, we adopted four differ-

ent operational occurrences over the course of the
TREAT study. The first stage represents the baseline and
denotes the gene expression profiles of patients at diag-
nosis. The second stage contains the data at the stage of
the trial where patients begin or restart use the open
label drug (patients at this stage may have been on either
MTX or MTX + etanercept – see Methods for the design
of the TREAT trial). These patients have had an unsatis-
factory course and were therefore switched to (or
restarted on) the more aggressive arm of the protocol.
Alternatively, in the second stage, children have had a
satisfactory response, and therefore continued to use the
blinded drug. Finally, the third stage represents the gene
profiles of patients who had achieved inactive disease as
defined by the clinical trial protocol. Thus, the four
stages can be summarized as:

1. Baseline

Fig. 3 An example of module strength estimation. a More interactions inside a module make it stronger. b The more interactions a module with
the outside, the less strong it is
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2. a. Unsatisfactory initial response – Patients
switched to open label drug (MTX, etanercept,
and oral corticosteroids). Patients who were
on this arm of the protocol had treatment
re-initiated with the same drugs and tapering
oral corticosteroids.

b. Satisfactory response – These patients were
maintained on blinded study drug.

3. Achieved inactive disease status.

To track the differences between open labeled and
blinded drug, we separated these four stages into two
scenarios: ‘non-responders’ (that is, those children who
were changed to open label drug) and ‘responders’ (that
is, those children who were maintained on blinded
drug). For the first case, we analyzed those patients
whose unsatisfactory response to the blinded drug
prompted a switch to open label drug and were started
on the more aggressive side of the protocol. Therefore,
these patients followed the stages (1)-(2a)-(3), as shown
in Fig. 4a and were designated ‘non-responders’. In the
second case, we analyzed expression profiles of those
patients who had a satisfactory response to the blinded
drug(s) and continued on those same drug(s). These
patients followed the stages (1)-(2b)-(3), and were desig-
nated ‘responders’ (Fig. 4a). Note, therefore, that this
analysis excludes those children who still had active dis-
ease at 12 months, as the endpoint in this analysis was
the attainment of ID, whether on the original therapy or
open labeled drug.
In addition to the strategy-based analysis, we also

undertook a time-based analysis, comparing treatment
phenotypes (active disease vs. inactive disease) at each of
the time points at which samples were available. In this
case, the first stage still denotes the baseline, that is,
newly diagnosed, untreated disease. The second stage

describes patients at 4 months, while the third and
fourth stages describe patients at 6 and 12 months,
respectively. Figure 4b shows the strategy for the time-
based analysis.

Results
Temporal characteristic of the dynamic networks
Before undertaking dynamic analysis of gene expression
networks, we first asked whether we could detect dy-
namic changes from stage to stage in the time-based
networks. To accomplish this task, we used four differ-
ent topological measurement methods: average gene
between-ness centrality [44], average gene closeness cen-
trality [45], and average gene correlation coefficients
[44]. Although each of these methods uses different for-
mulas, all of them are designed to measure a node’s rela-
tive importance within a network. The results of these
four measurements for AD and ID patients are shown in
Fig. 5, which demonstrates the dynamic change for each
of these measures. In addition, each of the measures
from the same group (that is, AD or ID) shows a similar
pattern of change. That is, the temporal characteristic of
AD patients dramatically decreases from 0 months to
4 months, and then gradually increases to 12 months.
The temporal characteristic of ID patients also dramatic-
ally decreased from 0 months to 4 months (similar to
the AD patients), then gradually increases to 6 months,
and finally decreases to 12 months. Note that all patients
showed the same patterns at 4 months regardless of
whether their illness was successfully treated and they
continued to experience active disease throughout the
12 months they were followed. Thus, we conclude that
these properties are not characteristics of either success-
ful or unsuccessful therapy in JIA despite the subtle
differences in the patterns seen between the two groups.

Fig. 4 Structures of the strategy-based and time-based analyses. Panel (a) shows the two strategy-based analysis: non-responders are the patients
follow the strategies through baseline- > unsatisfactory response- > inactive disease (blue arrow). Responders are the patients follow the strategies
through baseline- > satisfactory- > inactive disease. Panel (b) shows the time-based analysis: active disease (AD) cases represent the patients with
disease symptoms through baseline to the 12 months and inactive disease (ID) cases represent patients without disease symptoms at those specific
timestamps. Analyses are based on 28 available baseline samples, 47 samples in Group 2a, 20 available samples in Group 2b, and 52 samples from
patients who achieved inactive disease at 12 months
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Evolutionary events analysis of functional modules
Based on different stages’ gene networks, we were able
to elucidate corresponding temporal functional modules
in treated JIA. We next developed a module-status-
based framework for characterizing the evolution of
these functional gene modules. We characterized the
transformation of these modules by defining and identi-
fying specific critical module evolutionary events using
our previously published method for detecting such
events [46]. The evolutionary pattern of functional mod-
ules can be represented as a sequence of key evolutionary
events (changes) in consecutive timestamps. We used
these evolutionary events to compute and characterize
novel behavior-oriented measures, which offer insights
into the characterization of dynamic behavior of func-
tional modules.
First, we detected evolutionary events based on the

strategy-based analysis. We used the Non-negative
Matrix Factorization (NMF) [47] clustering method to
detect functional modules at each stage of treatment re-
sponse. In order to assess clustering at each timestamp,
it is necessary to determine a module number into
which the genes are partitioned. We preset this module
number at each stage as 50, and using this setting, the
gene number of each gene module contains 30 to 180
genes, within the range of previous studies [48]. Thus, at
each specific stage, we selected 50 functional modules
and tracked the evolutionary events among them.
As mentioned above, it is necessary to establish a

threshold to define the matching of evolutionary events;
the higher this threshold, the greater the confidence in

the result. We varied the threshold from 0.12 to 0.2 with
increments of 0.04. For each threshold, we constructed
plots and calculated the numbers of evolutionary events,
as shown in Figs. 6, 7, and 8. In Fig. 6a, we show evolu-
tionary events detected in non-responders where the
functional modules detected at stages 1, 2a, and 3, as
described in Fig. 4, interact with each other. This is the
pattern shown in children who initially had a poor
response and were changed to open label drug. In con-
trast, Fig. 6b shows the evolutionary events detected in
responders, where the functional modules detected at
stages 1, 2b, and 3 of Fig. 4 interact with each other.
Note that responders had noticeably fewer modules per-
sist from baseline to stage 2b (where they were assessed
to have had a satisfactory response) and from 2b to the
achievement of inactive disease status (Stage 3). This
pattern becomes clearer in Fig. 7. Figure 6c shows pie
graphs of showing the types of evolutionary events for
non-responders (top) and responders (bottom), where
the percentage of the five types of evolutionary events at
a certain time frame is shown. Note the relative paucity
of ‘continue’ events in either responders or non-
responders, indicating that treatment is associated with
significant re-ordering of network structures regardless
of therapeutic response even in non-responders.
Figures 7 and 8 show that as the threshold increases,
more form and dissolve events are found. Because the
threshold is used to measure the similarity between the
modules, the higher this threshold, the more interactions
between modules that will be filtered out (with the
remaining modules having a higher statistical probability

Fig. 5 Temporal characteristics of time-based networks showing active disease (AD) patients (top panel, A) and inactive disease (ID) patients (lower
panel, B), where the y-axis denotes the value of the corresponding topological measure and the x-axis denotes the four different timestamps (baseline,
4 months, 6 months, and 12 months). a Change of the average between-ness measure throughout the timestamps. b Change of the
average clustering coefficient measure throughout the timestamps. c Change of the average closeness measure through the timestamps
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of being biologically valid). Moreover, non-responders
(that is, those who failed their initial treatment and were
placed on open label drug) have more close connections
(that is, more merge, split, continue events are found)
than responders (that is, those who had had a satisfac-
tory response and therefore remained on their blinded

drug(s). In other words, the gene modules change in
non-responders more gradually than responders, con-
sistent with the clinical observation that the non-
responders do not have a satisfactory therapeutic re-
sponse until being switched to (or restarted on) open
label drug. Moreover, in the group who failed initial

Fig. 6 Evolutionary events detected from strategy-based analysis with the threshold set to 0.12. Stages refer to those shown in Fig. 4a. The 50
gene clusters are aligned vertically at each timestamp. In this figure: a The evolutionary events detected in non-responders where the functional
modules detected at stages 1, 2a, and 3 interact with each other; b The evolutionary events detected in responders where the functional module
detected at stages 1, 2b, and 3 interact with each other. c Pie graphs of evolutionary event calculation for each non-responders (top) and responders
(bottom), where the percent of five evolutionary events at a certain time gap are shown. Note the relative paucity of ‘continue’ events in
either responders or non-responders, indicating that treatment is associated with significant re-ordering of network structures regardless
of therapeutic response

Fig. 7 Evolutionary events detected from strategy-based analysis when the threshold is set to 0.16. The 50 gene clusters are aligned vertically at
each timestamp. a The evolutionary events detected in non-responders where the functional module detected at stages 1, 2a, and 3 interact with
each other; b The evolutionary events detected in responders where the functional module detected at stages 1, 2b, and 3 interact with each
other. c Pie graphs of evolutionary event calculation of both non-responders and responders, where the percent of five evolutionary events at
a certain time gap are shown. Note again the paucity of ‘continue’ events as well as the greater number of ‘dissolve’ events in the responders
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therapy and were moved to the open label arm of the
protocol (that is, those patients passing through stages 1,
2a, and 3), there were more detected events (merge,
split, continue) than seen for those patients with a satis-
factory response (stages 1, 2b, and 3), as noted above.
This was predictable, as the therapeutic course is more
complex in those patients who achieved ID status only
after switching to open label drug, even if this was the
arm of the protocol to which they were initially random-
ized. Finally, we note that there were relatively few ‘con-
tinue’ events detected at any of the thresholds used for
analysis. This finding suggests that, whether successful
or nor, treatment for JIA results in extensive re-wiring of
pathology-associated gene expression networks.

We next applied the proposed evolutionary event
detection method on patients with persistently active
disease in the time-based analysis dataset. Similar to the
strategy-based analysis, we selected 50 modules at each
timestamp, and then analyzed the evolutionary events
between the modules. Figure 9a demonstrates the evolu-
tionary events detected when the threshold was set
as 0.14. Two interesting module evolution patterns
emerged, the first of which represents a set of modules
which merge to a single module at the second time-
stamp (4 months into therapy) and remains consistent
until final timestamp (1 year into the trial, shown as
Fig. 9b). The second pattern represents as a set of mod-
ules which split into another set of gene modules in the

Fig. 8 Evolutionary events detected from strategy-based analysis when threshold is set to 0.2. The 50 gene clusters are aligned vertically at each
timestamp. a The evolutionary events detected in non-responders where the functional module detected at stages 1, 2a, and 3 interact with each
other; b The evolutionary events detected in responders where the functional module detected at stages 1, 2b, and 3 interact with each other.
c Pie graphs of evolutionary event calculation for both non-responders and responders, where the percent of five evolutionary events at a certain
time gap are shown. Note that, even in this more stringent analysis, non-responders have more merge, split, and continue events than responders
during the first 4 months of therapy (that is, the time period between stage 1 (baseline) and stage 2a or 2b)

Fig. 9 Evolutionary events detected from time-based analysis of patients with persistently active JIA. The 50 gene clusters are aligned vertically at
each timestamp. a Red lines represent a set of gene modules which merge into a single module at the 4-month time point and persist through
the 12 months of the trial. b Purple lines demonstrate a set of modules which split into another set of gene modules at 4 months, and finally
merge into one module in the third timestamp
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4 months, merge into a single module in the 6 months
(shown as Fig. 9c) and which finally disappears at
12 months.

Result of module strength progression
Using the time-based approach, we selected 50 func-
tional modules from each stage, which resulted in a total
of 192 modules that we inserted into our observed mod-
ule set after removing duplicate modules. The number
of genes in each of these modules was in the range of 50
to 180. Using the module strength progression method

described in the Methods section and Fig. 3, we ob-
served specific patterns related to each stage of treat-
ment response of active disease (AD) patients as show in
Fig. 10a. We observed that some modules’ strength
curves are relatively flat compared with the others.
Because the strength characteristics of these modules
are unchanged over the course of therapy, regardless of
whether it was successful, we assume that these mod-
ules are not critical in determining therapeutic re-
sponse and eliminated them from further analysis
(Fig. 10b). From the remaining modules, we find that

Fig. 10 Module strength patterns detected in patients with persistently active disease patients from the time based analysis, where each curve
represents the change of a functional module throughout the timestamps. The y-axis denotes the module strength and the x-axis denotes the
four different timestamps. a Strength curves of functional modules related to each time point; b Strength curves of functional modules related to
each time point after removing modules whose patterns did not specifically correlate with phenotype (in this case, active disease); panels c-e thus
show the patterns which are superimposed upon one-another in (b) as (c) the first pattern of the strength curves, whose strength is low at the
first three timestamps, and dramatically increases at the last timestamp. d Second pattern of the strength curves, whose strength changes as a
hill shape, increasing and then decreasing over time; e A third pattern of the strength curves, whose strength is high at the first timestamp but
dramatically drops at the following timestamps
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the gene modules generally follow three patterns as
shown in Fig. 10c, d, and e.
Based on the module strength results, we next com-

pared these three patterns with their corresponding
strength evolutionary patterns in the time-based analysis.
In other words, we sought to determine whether these
modules would have significantly different representa-
tions in AD and ID groups. Results are shown in in
Fig. 11. Two patterns, those designated ‘c’ and ‘d’ in
Fig. 10 and Pattern 1 and Pattern 2 in Fig. 11, perform
differently across the AD and ID groups. This suggests
that these communities represent specific biological
functions which are related to the AD group. On the
other hand, Pattern 3 demonstrates nearly identical
trends in both AD and ID groups. This suggests that it
is very likely that these communities represent some
mutual functions shared between AD and ID groups.
To gather a better biological understanding of these

patterns, we randomly sampled 15 modules (approxi-
mately 15 % to 20 % of each pattern) from each pat-
tern, and submitted them to functional analysis using
the Database for Annotation, Visualization and Inte-
grated Discovery (DAVID) Software (v6.7), a National
Institute of Allergy and Infectious Disease-supported
analysis tool that allows functional analysis of large
genomic datasets [49]. By using random sampling, the
analysis results are more likely to be representative

and free from bias and clustering errors, as this approach
gives each cluster of a population an equal chance of being
selected.
As Fig. 11 shows, two functional annotations are de-

pressed early in therapy but strengthen between 6 and
12 months in patients with persistently active disease.
For Pattern 2, we also found two functional annotations
which show significant differences different across the
pattern. These are the modules that show significant
strengthening between 0 and 4 months only in those pa-
tients with persistently active disease. These functional
groups are GO:0006811 (ion transport) and GO:0045165
(cell fate commitment). These processes are important
in both leukocyte activation and terminal differentiation
to effector cells.
For Pattern 1, we found two functional annotations

that showed statistically significant enrichment when
compared with the other patterns: GO:0007186 (G-pro-
tein coupled receptor protein signaling pathway) and
GO:0050890 (cognition), where the frequencies are shown
in Fig. 12a. The latter result was unexpected, although
complex relations between immune system activation and
cognitive functioning have long been suspected in adult
rheumatoid arthritis [50].
As Fig. 11 shows, these two functional annotations are

depressed in the first three stages, but after stage 4
(inactive stage) is reached they start to be active.

Fig. 11 Two patterns are found through the comparing between AD (top) and ID (bottom) groups in time-sequence analysis of network
cohesiveness. The two patterns on the left (Patterns 1 and 2) differ between the AD and ID patients. In Pattern 1, there is a set of modules that
increases in cohesiveness in the 6- to 12-month time period only in the AD patients. Note in Pattern 2 the increase in module cohesiveness in the
AD patients over the baseline to 4-month time period. This properties of this same set of modules remains unchanged in the ID group. These findings
are consistent with clinical data from the TREAT trial demonstrating the importance of the first 4 to 6 months of therapy in determining longer-term
response. The final pattern (Pattern 3) shares similar evolutionary features between the two groups

Du et al. Genome Medicine  (2015) 7:109 Page 12 of 16



For Pattern 2, we also found two functional annota-
tions which show significant differences different across
the pattern. These functional groups are GO:0006811
(ion transport) and GO:0045165 (cell fate commitment);
the frequencies are shown in Fig. 12b.
For Pattern 3, we found that the gene annotation GO:

0007166 (cell surface receptor linked signal transduction),
which shows remarkable different across patterns, where
the frequencies are shown in Fig. 12c. As the result shows,
this annotation is only active at the first stage, but after
that it begins to depress. Thus, it is possible that the drug
has an influence on this biological function.
In the time-based analysis, we have detected 50 func-

tional modules from each stage of AD group, and there
are 188 modules are inserted into our observed module
set after removing the duplicate modules.
For these detected modules, we have also made the

gene cluster strength analysis. First of all, we have
learned three cluster strength evolutionary patterns from
AD group which look similarly to the patterns we found
from the strategy-based analysis. The reason why the
detected patterns are similar is that the patients used for
constructing the strategy-based and the AD group in the
time-based analysis are actually highly overlapping.
To better demonstrate the functions behind these pat-

terns, we further look down into the gene annotation of
these patterns, respectively. We calculate the frequency
of the corresponding annotation terms of all the mod-
ules belonging to this pattern as Table 2 shows. As we
can see that, the frequencies we found are also close
with the statistical results of the corresponding patterns
detected in the strategy-based analysis.

Discussion
One of the fundamental findings of modern biology
has been the discovery that gene expression is tightly

coordinated across the genome [51]. Furthermore, gene
expression occurs in such a way as to form complex net-
works [52] that display a high degree of cohesiveness
and robustness [53]. These networks permit cells to
function properly in the setting of multiple perturbations
in the surrounding milieu [4, 6] and thus are likely to be
essential to survival of both single and multi-cellular
organisms. The findings from basic biology have led to
the hypothesis that human illnesses emerge because of
disturbances in these complex cellular networks [11, 12],
and there is clinical and experimental evidence to
support this hypothesis [54, 55]. Indeed, even ‘simple’
Mendelian traits appear to demonstrate complex alter-
ations and network ‘rewiring’ that was previously unsus-
pected [56]. In this paper, we demonstrate that medical
intervention itself is associated with complex alterations
in gene expression networks, and that different patterns
of rewiring are associated with efficacy and degree of
treatment response.
Juvenile idiopathic arthritis (JIA), the illness studied

here, has long been assumed to be a complex trait char-
acterized by gene-environment interactions [15], and is
one of the most common chronic illnesses in children
[57, 58]. The illness is characterized by inflammation

Fig. 12 Enrichment of functional annotations of genes represented in Fig. 10c-e. a Two different gene functional annotations, GO:0007186, G-
protein coupled receptor signaling, and GO: 0050890 (cognitive functioning) are enriched for Pattern 1 as shown by the blue bar. b Two different
represented gene annotations (GO:0006811, cell fate commitment and GO:0045165, cell fate commitment) are enriched in Pattern 2. On both
annotations, the percent taken in Pattern 2 (red bar) is clearly larger than Pattern 1 (blue bar) and Pattern 3 (green bar). c One different represented
gene annotation (GO: 0007166, cell surface receptor linked signal transduction) is enriched in Pattern 3. The percent taken in Pattern 3 (green bar) is
clearly large than Pattern 1 (blue bar) and Pattern 2 (red bar). For all annotations, the percent of genes identified by the functional annotations is
shown on the y-axis

Table 2 Annotation frequency analysis for patterns derived
from the active disease (AD) group in time-based analysis

GO Term Frequency

Pattern 1 GO:0007186 – G-protein coupled receptor
signaling pathway

32.40 %

GO:0050890 – cognition 32.40 %

Pattern 2 GO:0006811 – ion transport 10.70 %

GO:0045165 – cell fate commitment 14.20 %

Pattern 3 GO:0007166 – cell surface receptor linked
signal transduction

30.00 %
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and synovial hypertrophy in affected joints, and, prior to
the availability of effective therapies, frequently resulted
in permanent functional impairment or disability. Ther-
apy with methotrexate and biological inhibitors of tumor
necrosis factor (TNF) is now common practice and
provides most children with prolonged periods without
disease symptoms [59, 60]. Long categorized as an auto-
immune disease, it is now known that this illness prob-
ably emerges from complex interactions between the
adaptive and innate immune systems and includes
specific aberrations in neutrophil function [19, 61].
In this study, we used mathematical approaches previ-

ously used to analyze social networks [43] to probe the
biological basis of treatment response/non-response in
JIA. In this paper, we identified disease-associated net-
works, as we have previously described [43]. Treatment
was associated with rapid re-ordering of these networks,
even in patients whose therapeutic response was inad-
equate. Regardless of the stringency of the selection
process used map network evolution events (as de-
scribed in Fig. 1), very few networks persisted un-
changed after the first 4 months of therapy. This finding
is consistent with the clinical data from the TREAT
study subjects, which demonstrated that the first
4 months of treatment are crucial in determining thera-
peutic response (57), and is also consistent with add-
itional analyses we have undertaken with the TREAT
study gene expression data (unpublished data). Further-
more, non-responders demonstrated merge, split, and
continue events more than responders. Finally, when we
examined network cohesiveness through the lens of spe-
cific network properties, we found distinct differences
between children with favorable and unfavorable treat-
ment responses (Fig. 11). Once again, many of these dif-
ferences could be observed through network strength
evolution over the first 4 months of therapy (Fig. 11,
Pattern 2).
While there have been many efforts to define and

categorize the composition of gene co-expression net-
works in human disease, including JIA [21], our previous
work with social networks has shown that such net-
works also have specific properties (for example, module
strength) that may change over time even when the spe-
cific components of the network remain little altered. By
examining both network composition and network prop-
erties, we demonstrate the plausibility of gaining add-
itional insights into therapeutic response that would not
be available by limiting the examination to individual
components of any given network. Furthermore, the
networks identified via these approaches also reflected
biological plausibility, as shown in functional analysis
of randomly-selected networks (Fig. 12). For example,
GO:0007166 (cell surface receptor linked signal trans-
duction) ontologies link critical leukocyte activation

processes into defined networks whose properties chan-
ged over the course of therapy in this study.
There are several limits to these data that must be

acknowledged. The first in the unique nature of the
TREAT study subjects, which also means the absence of
a comparable patient group to independently corrobor-
ate our specific findings. The TREAT study was a once-
in-a-generation clinical trial, with a design quite different
from any treatment approach that might be used in typ-
ical clinical practice. In addition, the TREAT study sub-
jects differed a bit from what might be seen in a routine
cross-section of children with JIA, with a skewing of the
TREAT subjects toward children with more severe dis-
ease. It would be impossible, even within well-developed
pediatric research networks like the Children’s Arthritis
and Rheumatology Research Alliance, to find compar-
able patients on whom to validate these findings. We
should point out, however, that we have corroborated
findings from the TREAT whole blood gene expression
data on an independent cohort of children with un-
treated JIA, as reported in [26]. In the absence of a valid-
ation study for the TREAT trial itself, this this the
highest level of independent corroboration available.
Given that the analysis performed here relied on the
statistical methods and approaches used by Jiang and
Sawle [26] in the earlier paper and was corroborated in-
dependently in at least the untreated patients, there is
reason to have confidence that these analyses reflect ac-
tual biologic events. This confidence is increased insofar
as the data reported here are corroborated by recently
published clinical findings from the TREAT study [62].
The other major limitation of these data is the inher-

ent noisiness of whole blood gene expression data. Per-
ipheral blood is composed of multiple different cell
types and subtypes. Although Roadmap Epigenomics has
shown that there are overlaps in the transcriptomes of
peripheral blood cells, each of the specific cells and cell
subtypes has characteristic transcripts that define the
functional differences between those cells. Furthermore,
many potentially important cells may circulate in low
abundance, and network rewiring associated with tran-
scriptional changes in such low abundance cells would
be lost in the background ‘noise’ that would emerge
from cells of higher abundance. We have found, for ex-
ample, that about 56 % of the differentially expressed
transcripts in the TREAT study subjects are expressed by
neutrophils, the most abundant cell in the peripheral
blood (unpublished observation). While we note that
there were no significant changes in the composition of
peripheral blood cells as measured in routine clinical
analyses in the TREAT study subjects over time, we have
avoided over-emphasis on specific gene networks or mod-
ules and roles they might play in determining therapeutic
response, other than the random selection of specific

Du et al. Genome Medicine  (2015) 7:109 Page 14 of 16



modules for functional analysis as shown in Figs. 12. We
have demonstrate that many of the interesting patterns
(for example, module cohesion, Fig. 11) are associated
with plausible physiologic processes as assessed by gene
ontology analysis (for example, GO:0007186, G-protein
signaling pathways).

Conclusions
Treatment response in JIA can be analyzed through the
lens of evolving gene expression networks. We demon-
strate that treatment is associated with significant re-
ordering of gene expression networks and with multiple
different patterns of network/module evolution. We be-
lieve that these preliminary studies provide a framework
for similar approaches and analyses which, when applied
to data from purified, pathologically-relevant cells, will
provide unprecedented insight into the biology of thera-
peutic response in this common childhood disease.
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