22 research outputs found

    Water relations of evergreen and drought-deciduous trees along a seasonally dry tropical forest chronosequence

    Get PDF
    Seasonally dry tropical forests (SDTF) are characterized by pronounced seasonality in rainfall, and as a result trees in these forests must endure seasonal variation in soil water availability. Furthermore, SDTF on the northern Yucatan Peninsula, Mexico, have a legacy of disturbances, thereby creating a patchy mosaic of different seral stages undergoing secondary succession. We examined the water status of six canopy tree species, representing contrasting leaf phenology (evergreen vs. drought-deciduous) at three seral stages along a fire chronosequence in order to better understand strategies that trees use to overcome seasonal water limitations. The early-seral forest was characterized by high soil water evaporation and low soil moisture, and consequently early-seral trees exhibited lower midday bulk leaf water potentials (ΨL) relative to late-seral trees (−1.01 ± 0.14 and −0.54 ± 0.07 MPa, respectively). Although ΨL did not differ between evergreen and drought-deciduous trees, results from stable isotope analyses indicated different strategies to overcome seasonal water limitations. Differences were especially pronounced in the early-seral stage where evergreen trees had significantly lower xylem water δ18O values relative to drought-deciduous trees (−2.6 ± 0.5 and 0.3 ± 0.6‰, respectively), indicating evergreen species used deeper sources of water. In contrast, drought-deciduous trees showed greater enrichment of foliar 18O (∆18Ol) and 13C, suggesting lower stomatal conductance and greater water-use efficiency. Thus, the rapid development of deep roots appears to be an important strategy enabling evergreen species to overcome seasonal water limitation, whereas, in addition to losing a portion of their leaves, drought-deciduous trees minimize water loss from remaining leaves during the dry season

    Carbon isotope composition of canopy leaves in a tropical forest in Panama throughout a seasonal cycle

    No full text
    The seasonal variation in δ13C values was measured in leaves from 17 upper canopy, five mid-canopy and in four gap tree species, as well as in five epiphyte and five vine species, in a seasonally dry lowland tropical forest at Parque Natural Metropolitano near Panama City, Republic of Panama. No seasonal variation was detected in the δ13C values of mature exposed leaves from either the upper or mid-canopy. However, canopy position did influence the δ13C value. The mean isotopic composition of leaves from the mid-canopy was more negative than that of the upper canopy throughout the year. The δ13C value was also influenced by leaf development, with juvenile leaves on average 1.5‰ less negative than mature leaves. The five epiphyte species exhibited 13C values that were typical of crassulacean acid metabolism (CAM). Codonanthe uleana, with isotopic values of .19.9 to .22.1‰, is only the second species in the Gesneriaceae reported to express CAM, whereas values between .14.6 and .22.0‰ indicate that Peperomia macrostachya can exhibit different degrees of CAM. The isotopic composition of exposed mature leaves from the vines showed little interspecific variation and was similar to the upper-canopy leaves of the trees
    corecore