10 research outputs found

    Expression of the Stress Response Oncoprotein LEDGF/p75 in Human Cancer: A Study of 21 Tumor Types

    Get PDF
    Oxidative stress-modulated signaling pathways have been implicated in carcinogenesis and therapy resistance. The lens epithelium derived growth factor p75 (LEDGF/p75) is a transcription co-activator that promotes resistance to stress-induced cell death. This protein has been implicated in inflammatory and autoimmune conditions, HIV-AIDS, and cancer. Although LEDGF/p75 is emerging as a stress survival oncoprotein, there is scarce information on its expression in human tumors. The present study was performed to evaluate its expression in a comprehensive panel of human cancers. Transcript expression was examined in the Oncomine cancer gene microarray database and in a TissueScan Cancer Survey Panel quantitative polymerase chain reaction (Q-PCR) array. Protein expression was assessed by immunohistochemistry (IHC) in cancer tissue microarrays (TMAs) containing 1735 tissues representing single or replicate cores from 1220 individual cases (985 tumor and 235 normal tissues). A total of 21 major cancer types were analyzed. Analysis of LEDGF/p75 transcript expression in Oncomine datasets revealed significant upregulation (tumor vs. normal) in 15 out of 17 tumor types. The TissueScan Cancer Q-PCR array revealed significantly elevated LEDGF/p75 transcript expression in prostate, colon, thyroid, and breast cancers. IHC analysis of TMAs revealed significant increased levels of LEDGF/p75 protein in prostate, colon, thyroid, liver and uterine tumors, relative to corresponding normal tissues. Elevated transcript or protein expression of LEDGF/p75 was observed in several tumor types. These results further establish LEDGF/p75 as a cancer-related protein, and provide a rationale for ongoing studies aimed at understanding the clinical significance of its expression in specific human cancers

    Human IgG3 with extended half-life does not improve Fc-gamma receptor-mediated cancer antibody therapies in mice

    Get PDF
    Current anti-cancer therapeutic antibodies that are used in the clinic are predominantly humanized or fully human immunoglobulin G1 (IgG1). These antibodies bind with high affinity to the target antigen and are efficient in activating the immune system via IgG Fc receptors and/or complement. In addition to IgG1, three more isotypes are present in humans, of which IgG3 has been found to be superior compared to human IgG1 in inducing antibody dependent cell cytotoxicity (ADCC), phagocytosis or activation of complement in some models. Nonetheless, no therapeutic human IgG3 mAbs have been developed due to the short in vivo half-life of most known IgG3 allotypes. In this manuscript, we compared the efficacy of V-gene matched IgG1 and IgG3 anti-tumour mAb (TA99) in mice, using natural variants of human IgG3 with short- or long half-life, differing only at position 435 with an arginine or histidine, respectively. In vitro human IgG1 and IgG3 did not show any differences in opsonisation ability of B16F10-gp75 mouse melanoma cells. IgG1, however, was superior in inducing phagocytosis of tumour cells by mouse macrophages. Similarly, in a mouse peritoneal metastasis model we did not detect an improved effect of IgG3 in preventing tumour outgrowth. Moreover, replacing the arginine at position 435 for a histidine in IgG3 to enhance half-life did not result in better suppression of tumour outgrowth compared to wild type IgG3 when injected prior to tumour cell injection. In conclusion, human IgG3 does not have improved therapeutic efficacy compared to human IgG1 in a mouse tumour mode

    The significance of autoantibodies to DFS70/LEDGFp75 in health and disease: integrating basic science with clinical understanding

    No full text
    corecore