44 research outputs found
Defective Fluid Secretion from Submucosal Glands of Nasal Turbinates from CFTR-/- and CFTRΔF508/ΔF508 Pigs
Cystic fibrosis (CF), caused by reduced CFTR function, includes severe sinonasal disease which may predispose to lung disease. Newly developed CF pigs provide models to study the onset of CF pathophysiology. We asked if glands from pig nasal turbinates have secretory responses similar to those of tracheal glands and if CF nasal glands show reduced fluid secretion.Unexpectedly, we found that nasal glands differed from tracheal glands in five ways, being smaller, more numerous (density per airway surface area), more sensitive to carbachol, more sensitive to forskolin, and nonresponsive to Substance P (a potent agonist for pig tracheal glands). Nasal gland fluid secretion from newborn piglets (12 CF and 12 controls) in response to agonists was measured using digital imaging of mucus bubbles formed under oil. Secretion rates were significantly reduced in all conditions tested. Fluid secretory rates (Controls vs. CF, in pl/min/gland) were as follows: 3 µM forskolin: 9.2±2.2 vs. 0.6±0.3; 1 µM carbachol: 143.5±35.5 vs. 52.2±10.3; 3 µM forskolin + 0.1 µM carbachol: 25.8±5.8 vs. CF 4.5±0.9. We also compared CF(ΔF508/ΔF508) with CFTR(-/-) piglets and found significantly greater forskolin-stimulated secretion rates in the ΔF508 vs. the null piglets (1.4±0.8, n = 4 vs. 0.2±0.1, n = 7). An unexpected age effect was also discovered: the ratio of secretion to 3 µM forskolin vs. 1 µM carbachol was ∼4 times greater in adult than in neonatal nasal glands.These findings reveal differences between nasal and tracheal glands, show defective fluid secretion in nasal glands of CF pigs, reveal some spared function in the ΔF508 vs. null piglets, and show unexpected age-dependent differences. Reduced nasal gland fluid secretion may predispose to sinonasal and lung infections
Analysis of the EIAV Rev-Responsive Element (RRE) Reveals a Conserved RNA Motif Required for High Affinity Rev Binding in Both HIV-1 and EIAV
A cis-acting RNA regulatory element, the Rev-responsive element (RRE), has essential roles in replication of lentiviruses, including human immunodeficiency virus (HIV-1) and equine infection anemia virus (EIAV). The RRE binds the viral trans-acting regulatory protein, Rev, to mediate nucleocytoplasmic transport of incompletely spliced mRNAs encoding viral structural genes and genomic RNA. Because of its potential as a clinical target, RRE-Rev interactions have been well studied in HIV-1; however, detailed molecular structures of Rev-RRE complexes in other lentiviruses are still lacking. In this study, we investigate the secondary structure of the EIAV RRE and interrogate regulatory protein-RNA interactions in EIAV Rev-RRE complexes. Computational prediction and detailed chemical probing and footprinting experiments were used to determine the RNA secondary structure of EIAV RRE-1, a 555 nt region that provides RRE function in vivo. Chemical probing experiments confirmed the presence of several predicted loop and stem-loop structures, which are conserved among 140 EIAV sequence variants. Footprinting experiments revealed that Rev binding induces significant structural rearrangement in two conserved domains characterized by stable stem-loop structures. Rev binding region-1 (RBR-1) corresponds to a genetically-defined Rev binding region that overlaps exon 1 of the EIAV rev gene and contains an exonic splicing enhancer (ESE). RBR-2, characterized for the first time in this study, is required for high affinity binding of EIAV Rev to the RRE. RBR-2 contains an RNA structural motif that is also found within the high affinity Rev binding site in HIV-1 (stem-loop IIB), and within or near mapped RRE regions of four additional lentiviruses. The powerful integration of computational and experimental approaches in this study has generated a validated RNA secondary structure for the EIAV RRE and provided provocative evidence that high affinity Rev binding sites of HIV-1 and EIAV share a conserved RNA structural motif. The presence of this motif in phylogenetically divergent lentiviruses suggests that it may play a role in highly conserved interactions that could be targeted in novel anti-lentiviral therapies
Stroke awareness decreases prehospital delay after acute ischemic stroke in korea
BACKGROUND: Delayed arrival at hospital is one of the major obstacles in enhancing the rate of thrombolysis therapy in patients with acute ischemic stroke. Our study aimed to investigate factors associated with prehospital delay after acute ischemic stroke in Korea.
METHODS: A prospective, multicenter study was conducted at 14 tertiary hospitals in Korea from March 2009 to July 2009. We interviewed 500 consecutive patients with acute ischemic stroke who arrived within 48 hours. Univariate and multivariate analyses were performed to evaluate factors influencing prehospital delay.
RESULTS: Among the 500 patients (median 67 years, 62% men), the median time interval from symptom onset to arrival was 474 minutes (interquartile range, 170-1313). Early arrival within 3 hours of symptom onset was significantly associated with the following factors: high National Institutes of Health Stroke Scale (NIHSS) score, previous stroke, atrial fibrillation, use of ambulance, knowledge about thrombolysis and awareness of the patient/bystander that the initial symptom was a stroke. Multivariable logistic regression analysis indicated that awareness of the patient/bystander that the initial symptom was a stroke (OR 4.438, 95% CI 2.669-7.381), knowledge about thrombolysis (OR 2.002, 95% CI 1.104-3.633) and use of ambulance (OR 1.961, 95% CI 1.176-3.270) were significantly associated with early arrival.
CONCLUSIONS: In Korea, stroke awareness not only on the part of patients, but also of bystanders, had a great impact on early arrival at hospital. To increase the rate of thrombolysis therapy and the incidence of favorable outcomes, extensive general public education including how to recognize stroke symptoms would be important.ope
Identification and Comparative Expression Analysis of Interleukin 2/15 Receptor β Chain in Chickens Infected with E. tenella
BACKGROUND: Interleukin (IL) 2 and IL15 receptor β chain (IL2/15Rβ, CD122) play critical roles in signal transduction for the biological activities of IL2 and IL15. Increased knowledge of non-mammalian IL2/15Rβ will enhance the understanding of IL2 and IL15 functions. METHODOLOGY/PRINCIPAL FINDINGS: [corrected] Chicken IL2/15Rβ (chIL2/15Rβ) cDNA was cloned using 5'/3'-RACE. The predicted protein sequence contained 576 amino acids and typical features of the type-I cytokine receptor family. COS-7 cells transfected with chIL2/15Rβ produced proteins of approximately 75 and 62.5 kDa under normal and tunicamycin-treated conditions, respectively. The genomic structure of chIL2/15Rβ was similar to its mammalian counterparts. chIL2/15Rβ transcripts were detected in the lymphoblast cell line CU205 and in normal lymphoid organs and at moderate levels in bursa samples. Expression profiles of chIL2/15Rβ and its related cytokines and receptors were examined in ConA-stimulated splenic lymphocytes and in ceca-tonsils of Eimeria tenella-infected chickens using quantitative real-time PCR. Expression levels of chIL2/15Rβ, chIL2Rα, and chIL15Rα were generally elevated in ceca-tonsils and ConA-activated splenic lymphocytes. However, chIL2 and chIL15 expression levels were differentially regulated between the samples. chIL2 expression was upregulated in ConA-activated splenic lymphocytes, but not in ceca-tonsils. In constrast, chIL15 expression was upregulated in ceca-tonsils, but not in ConA-activated splenic lymphocytes. CONCLUSIONS/SIGNIFICANCE: We identified an avian form of IL2/15Rβ and compared its gene expression pattern with those of chIL2, chIL15, chIL2Rα, and chIL15Rα. Our observations suggest that chIL15 and its receptors, including chIL2/15Rβ, play important roles in mucosal immunity to intestinal intracellular parasites such as Eimeria
Fabrication of electrophoretic display panel using prepatterned barrier rib
Fabrication process of electrophoretic display panels was investigated by ulilizing transparent soft mold press, which enables to guide uniform packing of charged TiO2 particles and colored particles for color e-Paper display. For this process, transparent soft mold was prepared by reacting silicone solution (silicone prepolymer/curing agent = 10/1 wt./wt.) into the base mold. While pressed with the transparent soft mold under 1.5 similar to 3.0 Kg(f)/cm(2) of pressure at 60 similar to 90degreesC, the photosensitive film was exposed to UV light at 865 nm in the range of 800 similar to 2,000 mJ/cm(2). The transparant soft mold was demolded by rolling up to give electrophoretic display panels with precise geometry. The process of obtaining colored electrophoretic display was also discussedclose1