46 research outputs found

    Evolution of Streptococcus pneumoniae and Its Close Commensal Relatives

    Get PDF
    Streptococcus pneumoniae is a member of the Mitis group of streptococci which, according to 16S rRNA-sequence based phylogenetic reconstruction, includes 12 species. While other species of this group are considered prototypes of commensal bacteria, S. pneumoniae is among the most frequent microbial killers worldwide. Population genetic analysis of 118 strains, supported by demonstration of a distinct cell wall carbohydrate structure and competence pheromone sequence signature, shows that S. pneumoniae is one of several hundred evolutionary lineages forming a cluster separate from Streptococcus oralis and Streptococcus infantis. The remaining lineages of this distinct cluster are commensals previously collectively referred to as Streptococcus mitis and each represent separate species by traditional taxonomic standard. Virulence genes including the operon for capsule polysaccharide synthesis and genes encoding IgA1 protease, pneumolysin, and autolysin were randomly distributed among S. mitis lineages. Estimates of the evolutionary age of the lineages, the identical location of remnants of virulence genes in the genomes of commensal strains, the pattern of genome reductions, and the proportion of unique genes and their origin support the model that the entire cluster of S. pneumoniae, S. pseudopneumoniae, and S. mitis lineages evolved from pneumococcus-like bacteria presumably pathogenic to the common immediate ancestor of hominoids. During their adaptation to a commensal life style, most of the lineages gradually lost the majority of genes determining virulence and became genetically distinct due to sexual isolation in their respective hosts

    A Method for Structure–Activity Analysis of Quorum-Sensing Signaling Peptides from Naturally Transformable Streptococci

    Get PDF
    Many species of streptococci secrete and use a competence-stimulating peptide (CSP) to initiate quorum sensing for induction of genetic competence, bacteriocin production, and other activities. These signaling molecules are small, unmodified peptides that induce powerful strain-specific activity at nano-molar concentrations. This feature has provided an excellent opportunity to explore their structure–function relationships. However, CSP variants have also been identified in many species, and each specifically activates its cognate receptor. How such minor changes dramatically affect the specificity of these peptides remains unclear. Structure–activity analysis of these peptides may provide clues for understanding the specificity of signaling peptide–receptor interactions. Here, we use the Streptococcus mutans CSP as an example to describe methods of analyzing its structure–activity relationship. The methods described here may provide a platform for studying quorum-sensing signaling peptides of other naturally transformable streptococci

    Inhibition of Competence Development, Horizontal Gene Transfer and Virulence in Streptococcus pneumoniae by a Modified Competence Stimulating Peptide

    Get PDF
    Competence stimulating peptide (CSP) is a 17-amino acid peptide pheromone secreted by Streptococcus pneumoniae. Upon binding of CSP to its membrane-associated receptor kinase ComD, a cascade of signaling events is initiated, leading to activation of the competence regulon by the response regulator ComE. Genes encoding proteins that are involved in DNA uptake and transformation, as well as virulence, are upregulated. Previous studies have shown that disruption of key components in the competence regulon inhibits DNA transformation and attenuates virulence. Thus, synthetic analogues that competitively inhibit CSPs may serve as attractive drugs to control pneumococcal infection and to reduce horizontal gene transfer during infection. We performed amino acid substitutions on conserved amino acid residues of CSP1 in an effort to disable DNA transformation and to attenuate the virulence of S. pneumoniae. One of the mutated peptides, CSP1-E1A, inhibited development of competence in DNA transformation by outcompeting CSP1 in time and concentration-dependent manners. CSP1-E1A reduced the expression of pneumococcal virulence factors choline binding protein D (CbpD) and autolysin A (LytA) in vitro, and significantly reduced mouse mortality after lung infection. Furthermore, CSP1-E1A attenuated the acquisition of an antibiotic resistance gene and a capsule gene in vivo. Finally, we demonstrated that the strategy of using a peptide inhibitor is applicable to other CSP subtype, including CSP2. CSP1-E1A and CSP2-E1A were able to cross inhibit the induction of competence and DNA transformation in pneumococcal strains with incompatible ComD subtypes. These results demonstrate the applicability of generating competitive analogues of CSPs as drugs to control horizontal transfer of antibiotic resistance and virulence genes, and to attenuate virulence during infection by S. pneumoniae

    Horizontal DNA transfer mechanisms of bacteria as weapons of intragenomic conflict

    Get PDF
    Horizontal DNA transfer (HDT) is a pervasive mechanism of diversification in many microbial species, but its primary evolutionary role remains controversial. Much recent research has emphasised the adaptive benefit of acquiring novel DNA, but here we argue instead that intragenomic conflict provides a coherent framework for understanding the evolutionary origins of HDT. To test this hypothesis, we developed a mathematical model of a clonally descended bacterial population undergoing HDT through transmission of mobile genetic elements (MGEs) and genetic transformation. Including the known bias of transformation toward the acquisition of shorter alleles into the model suggested it could be an effective means of counteracting the spread of MGEs. Both constitutive and transient competence for transformation were found to provide an effective defence against parasitic MGEs; transient competence could also be effective at permitting the selective spread of MGEs conferring a benefit on their host bacterium. The coordination of transient competence with cell-cell killing, observed in multiple species, was found to result in synergistic blocking of MGE transmission through releasing genomic DNA for homologous recombination while simultaneously reducing horizontal MGE spread by lowering the local cell density. To evaluate the feasibility of the functions suggested by the modelling analysis, we analysed genomic data from longitudinal sampling of individuals carrying Streptococcus pneumoniae. This revealed the frequent within-host coexistence of clonally descended cells that differed in their MGE infection status, a necessary condition for the proposed mechanism to operate. Additionally, we found multiple examples of MGEs inhibiting transformation through integrative disruption of genes encoding the competence machinery across many species, providing evidence of an ongoing "arms race." Reduced rates of transformation have also been observed in cells infected by MGEs that reduce the concentration of extracellular DNA through secretion of DNases. Simulations predicted that either mechanism of limiting transformation would benefit individual MGEs, but also that this tactic's effectiveness was limited by competition with other MGEs coinfecting the same cell. A further observed behaviour we hypothesised to reduce elimination by transformation was MGE activation when cells become competent. Our model predicted that this response was effective at counteracting transformation independently of competing MGEs. Therefore, this framework is able to explain both common properties of MGEs, and the seemingly paradoxical bacterial behaviours of transformation and cell-cell killing within clonally related populations, as the consequences of intragenomic conflict between self-replicating chromosomes and parasitic MGEs. The antagonistic nature of the different mechanisms of HDT over short timescales means their contribution to bacterial evolution is likely to be substantially greater than previously appreciated

    Structure and Mode-of-Action of the Two-Peptide (Class-IIb) Bacteriocins

    Get PDF
    This review focuses on the structure and mode-of-action of the two-peptide (class-IIb) bacteriocins that consist of two different peptides whose genes are next to each other in the same operon. Optimal antibacterial activity requires the presence of both peptides in about equal amounts. The two peptides are synthesized as preforms that contain a 15–30 residue double-glycine-type N-terminal leader sequence that is cleaved off at the C-terminal side of two glycine residues by a dedicated ABC-transporter that concomitantly transfers the bacteriocin peptides across cell membranes. Two-peptide bacteriocins render the membrane of sensitive bacteria permeable to a selected group of ions, indicating that the bacteriocins form or induce the formation of pores that display specificity with respect to the transport of molecules. Based on structure–function studies, it has been proposed that the two peptides of two-peptide bacteriocins form a membrane-penetrating helix–helix structure involving helix–helix-interacting GxxxG-motifs that are present in all characterized two-peptide bacteriocins. It has also been suggested that the membrane-penetrating helix–helix structure interacts with an integrated membrane protein, thereby triggering a conformational alteration in the protein, which in turn causes membrane-leakage. This proposed mode-of-action is similar to the mode-of-action of the pediocin-like (class-IIa) bacteriocins and lactococcin A (a class-IId bacteriocin), which bind to a membrane-embedded part of the mannose phosphotransferase permease in a manner that causes membrane-leakage and cell death

    Proteome Analysis Identifies the Dpr Protein of Streptococcus mutans as an Important Factor in the Presence of Early Streptococcal Colonizers of Tooth Surfaces

    Get PDF
    Oral streptococci are primary colonizers of tooth surfaces and Streptococcus mutans is the principal causative agent of dental caries in humans. A number of proteins are involved in the formation of monospecies biofilms by S. mutans. This study analyzed the protein expression profiles of S. mutans biofilms formed in the presence or absence of S. gordonii, a pioneer colonizer of the tooth surface, by two-dimensional gel electrophoresis (2-DE). After identifying S. mutans proteins by Mass spectrometric analysis, their expression in the presence of S. gordonii was analyzed. S. mutans was inoculated with or without S. gordonii DL1. The two species were compartmentalized using 0.2-μl Anopore membranes. The biofilms on polystyrene plates were harvested, and the solubilized proteins were separated by 2-DE. When S. mutans biofilms were formed in the presence of S. gordonii, the peroxide resistance protein Dpr of the former showed 4.3-fold increased expression compared to biofilms that developed in the absence of the pioneer colonizer. In addition, we performed a competition assay using S. mutans antioxidant protein mutants together with S. gordonii and other initial colonizers. Growth of the dpr-knockout S. mutans mutant was significantly inhibited by S. gordonii, as well as by S. sanguinis. Furthermore, a cell viability assay revealed that the viability of the dpr-defective mutant was significantly attenuated compared to the wild-type strain when co-cultured with S. gordonii. Therefore, these results suggest that Dpr might be one of the essential proteins for S. mutans survival on teeth in the presence of early colonizing oral streptococci

    Role of the Single-Stranded DNA–Binding Protein SsbB in Pneumococcal Transformation: Maintenance of a Reservoir for Genetic Plasticity

    Get PDF
    Bacteria encode a single-stranded DNA (ssDNA) binding protein (SSB) crucial for genome maintenance. In Bacillus subtilis and Streptococcus pneumoniae, an alternative SSB, SsbB, is expressed uniquely during competence for genetic transformation, but its precise role has been disappointingly obscure. Here, we report our investigations involving comparison of a null mutant (ssbB−) and a C-ter truncation (ssbBΔ7) of SsbB of S. pneumoniae, the latter constructed because SSBs' acidic tail has emerged as a key site for interactions with partner proteins. We provide evidence that SsbB directly protects internalized ssDNA. We show that SsbB is highly abundant, potentially allowing the binding of ∼1.15 Mb ssDNA (half a genome equivalent); that it participates in the processing of ssDNA into recombinants; and that, at high DNA concentration, it is of crucial importance for chromosomal transformation whilst antagonizing plasmid transformation. While the latter observation explains a long-standing observation that plasmid transformation is very inefficient in S. pneumoniae (compared to chromosomal transformation), the former supports our previous suggestion that SsbB creates a reservoir of ssDNA, allowing successive recombination cycles. SsbBΔ7 fulfils the reservoir function, suggesting that SsbB C-ter is not necessary for processing protein(s) to access stored ssDNA. We propose that the evolutionary raison d'être of SsbB and its abundance is maintenance of this reservoir, which contributes to the genetic plasticity of S. pneumoniae by increasing the likelihood of multiple transformation events in the same cell

    A Metalloproteinase Secreted by Streptococcus pneumoniae Removes Membrane Mucin MUC16 from the Epithelial Glycocalyx Barrier

    Get PDF
    The majority of bacterial infections occur across wet-surfaced mucosal epithelia, including those that cover the eye, respiratory tract, gastrointestinal tract and genitourinary tract. The apical surface of all these mucosal epithelia is covered by a heavily glycosylated glycocalyx, a major component of which are membrane-associated mucins (MAMs). MAMs form a barrier that serves as one of the first lines of defense against invading bacteria. While opportunistic bacteria rely on pre-existing defects or wounds to gain entry to epithelia, non opportunistic bacteria, especially the epidemic disease-causing ones, gain access to epithelial cells without evidence of predisposing injury. The molecular mechanisms employed by these non opportunistic pathogens to breach the MAM barrier remain unknown. To test the hypothesis that disease-causing non opportunistic bacteria gain access to the epithelium by removal of MAMs, corneal, conjunctival, and tracheobronchial epithelial cells, cultured to differentiate to express the MAMs, MUCs 1, 4, and 16, were exposed to a non encapsulated, non typeable strain of Streptococcus pneumoniae (SP168), which causes epidemic conjunctivitis. The ability of strain SP168 to induce MAM ectodomain release from epithelia was compared to that of other strains of S. pneumoniae, as well as the opportunistic pathogen Staphylococcus aureus. The experiments reported herein demonstrate that the epidemic disease-causing S. pneumoniae species secretes a metalloproteinase, ZmpC, which selectively induces ectodomain shedding of the MAM MUC16. Furthermore, ZmpC-induced removal of MUC16 from the epithelium leads to loss of the glycocalyx barrier function and enhanced internalization of the bacterium. These data suggest that removal of MAMs by bacterial enzymes may be an important virulence mechanism employed by disease-causing non opportunistic bacteria to gain access to epithelial cells to cause infection

    Cell-to-Cell Transformation in Escherichia coli: A Novel Type of Natural Transformation Involving Cell-Derived DNA and a Putative Promoting Pheromone

    Get PDF
    Escherichia coli is not assumed to be naturally transformable. However, several recent reports have shown that E. coli can express modest genetic competence in certain conditions that may arise in its environment. We have shown previously that spontaneous lateral transfer of non-conjugative plasmids occurs in a colony biofilm of mixed E. coli strains (a set of a donor strain harbouring a plasmid and a plasmid-free recipient strain). In this study, with high-frequency combinations of strains and a plasmid, we constructed the same lateral plasmid transfer system in liquid culture. Using this system, we demonstrated that this lateral plasmid transfer was DNase-sensitive, indicating that it is a kind of transformation in which DNase-accessible extracellular naked DNA is essential. However, this transformation did not occur with purified plasmid DNA and required a direct supply of plasmid from co-existing donor cells. Based on this feature, we have termed this transformation type as ‘cell-to-cell transformation’. Analyses using medium conditioned with the high-frequency strain revealed that this strain released a certain factor(s) that promoted cell-to-cell transformation and arrested growth of the other strains. This factor is heat-labile and protease-sensitive, and its roughly estimated molecular mass was between ∼9 kDa and ∼30 kDa, indicating that it is a polypeptide factor. Interestingly, this factor was effective even when the conditioned medium was diluted 10–5–10–6, suggesting that it acts like a pheromone with high bioactivity. Based on these results, we propose that cell-to-cell transformation is a novel natural transformation mechanism in E. coli that requires cell-derived DNA and is promoted by a peptide pheromone. This is the first evidence that suggests the existence of a peptide pheromone-regulated transformation mechanism in E. coli and in Gram-negative bacteria
    corecore