16 research outputs found
Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries
The article reviews the current status of a theoretical approach to the
problem of the emission of gravitational waves by isolated systems in the
context of general relativity. Part A of the article deals with general
post-Newtonian sources. The exterior field of the source is investigated by
means of a combination of analytic post-Minkowskian and multipolar
approximations. The physical observables in the far-zone of the source are
described by a specific set of radiative multipole moments. By matching the
exterior solution to the metric of the post-Newtonian source in the near-zone
we obtain the explicit expressions of the source multipole moments. The
relationships between the radiative and source moments involve many non-linear
multipole interactions, among them those associated with the tails (and
tails-of-tails) of gravitational waves. Part B of the article is devoted to the
application to compact binary systems. We present the equations of binary
motion, and the associated Lagrangian and Hamiltonian, at the third
post-Newtonian (3PN) order beyond the Newtonian acceleration. The
gravitational-wave energy flux, taking consistently into account the
relativistic corrections in the binary moments as well as the various tail
effects, is derived through 3.5PN order with respect to the quadrupole
formalism. The binary's orbital phase, whose prior knowledge is crucial for
searching and analyzing the signals from inspiralling compact binaries, is
deduced from an energy balance argument.Comment: 109 pages, 1 figure; this version is an update of the Living Review
article originally published in 2002; available on-line at
http://www.livingreviews.org
