28 research outputs found

    The Nature of the Dietary Protein Impacts the Tissue-to-Diet 15N Discrimination Factors in Laboratory Rats

    Get PDF
    Due to the existence of isotope effects on some metabolic pathways of amino acid and protein metabolism, animal tissues are 15N-enriched relative to their dietary nitrogen sources and this 15N enrichment varies among different tissues and metabolic pools. The magnitude of the tissue-to-diet discrimination (Δ15N) has also been shown to depend on dietary factors. Since dietary protein sources affect amino acid and protein metabolism, we hypothesized that they would impact this discrimination factor, with selective effects at the tissue level. To test this hypothesis, we investigated in rats the influence of a milk or soy protein-based diet on Δ15N in various nitrogen fractions (urea, protein and non-protein fractions) of blood and tissues, focusing on visceral tissues. Regardless of the diet, the different protein fractions of blood and tissues were generally 15N-enriched relative to their non-protein fraction and to the diet (Δ15N>0), with large variations in the Δ15N between tissue proteins. Δ15N values were markedly lower in tissue proteins of rats fed milk proteins compared to those fed soy proteins, in all sampled tissues except in the intestine, and the amplitude of Δ15N differences between diets differed between tissues. Both between-tissue and between-diet Δ15N differences are probably related to modulations of the relative orientation of dietary and endogenous amino acids in the different metabolic pathways. More specifically, the smaller Δ15N values observed in tissue proteins with milk than soy dietary protein may be due to a slightly more direct channeling of dietary amino acids for tissue protein renewal and to a lower recycling of amino acids through fractionating pathways. In conclusion, the present data indicate that natural Δ15N of tissue are sensitive markers of the specific subtle regional modifications of the protein and amino acid metabolism induced by the protein dietary source

    Glutamic Acid Decarboxylase-Derived Epitopes with Specific Domains Expand CD4+CD25+ Regulatory T Cells

    Get PDF
    BACKGROUND:CD4(+)CD25(+) regulatory T cell (Treg)-based immunotherapy is considered a promising regimen for controlling the progression of autoimmune diabetes. In this study, we tested the hypothesis that the therapeutic effects of Tregs in response to the antigenic epitope stimulation depend on the structural properties of the epitopes used. METHODOLOGY/PRINCIPAL FINDINGS:Splenic lymphocytes from nonobese diabetic (NOD) mice were stimulated with different glutamic acid decarboxylase (GAD)-derived epitopes for 7-10 days and the frequency and function of Tregs was analyzed. We found that, although all expanded Tregs showed suppressive functions in vitro, only p524 (GAD524-538)-expanded CD4(+)CD25(+) T cells inhibited diabetes development in the co-transfer models, while p509 (GAD509-528)- or p530 (GAD530-543)-expanded CD4(+)CD25(+) T cells had no such effects. Using computer-guided molecular modeling and docking methods, the differences in structural characteristics of these epitopes and the interaction mode (including binding energy and identified domains in the epitopes) between the above-mentioned epitopes and MHC class II I-A(g7) were analyzed. The theoretical results showed that the epitope p524, which induced protective Tregs, possessed negative surface-electrostatic potential and bound two chains of MHC class II I-A(g7), while the epitopes p509 and p530 which had no such ability exhibited positive surface-electrostatic potential and bound one chain of I-A(g7). Furthermore, p524 bound to I-A(g7) more stably than p509 and p530. Of importance, we hypothesized and subsequently confirmed experimentally that the epitope (GAD570-585, p570), which displayed similar characteristics to p524, was a protective epitope by showing that p570-expanded CD4(+)CD25(+) T cells suppressed the onset of diabetes in NOD mice. CONCLUSIONS/SIGNIFICANCE:These data suggest that molecular modeling-based structural analysis of epitopes may be an instrumental tool for prediction of protective epitopes to expand functional Tregs

    Stoichiometry of HLA Class II-Invariant Chain Oligomers

    Get PDF
    BACKGROUND: The HLA gene complex encodes three class II isotypes, DR, DQ, and DP. HLA class II molecules are peptide receptors that present antigens for recognition by T lymphocytes. In antigen presenting cells, the assembly of matched α and ÎČ subunits to heterodimers is chaperoned by invariant chain (Ii). Ii forms a homotrimer with three binding sites for class II heterodimers. The current model of class II and Ii structure states that three αÎČ heterodimers bind to an Ii trimer. METHODOLOGY/PRINCIPAL FINDINGS: [corrected] We have now analyzed the composition and size of the complexes of class II and Ii using epitope tagged class II subunits and density gradient experiments. We show here that class II-Ii oligomers consist of one class II heterodimer associated with one Ii trimer, such that the DR, DQ and DP isotypes are contained within separate complexes with Ii. CONCLUSION/SIGNIFICANCE: We propose a structural model of the class II-Ii oligomer and speculate that the pentameric class II-Ii complex is bent towards the cell membrane, inhibiting the binding of additional class II heterodimers to Ii

    Justice and Corporate Governance: New Insights from Rawlsian Social Contract and Sen’s Capabilities Approach

    Get PDF
    By considering what we identify as a problem inherent in the ‘nature of the firm’—the risk of abuse of authority—we propound the conception of a social contract theory of the firm which is truly Rawlsian in its inspiration. Hence, we link the social contract theory of the firm (justice at firm’s level) with the general theory of justice (justice at society’s level). Through this path, we enter the debate about whether firms can be part of Rawlsian theory of justice showing that corporate governance principles enter the “basic structure.” Finally, we concur with Sen’s aim to broaden the realm of social justice beyond what he calls the ‘transcendental institutional perfectionism’ of Rawls’ theory. We maintain the contractarian approach to justice but introduce Sen’s capability concept as an element of the constitutional and post-constitutional contract model of institutions with special reference to corporate governance. Accordingly, rights over primary goods and capabilities are (constitutionally) granted by the basic institutions of society, but many capabilities have to be turned into the functionings of many stakeholders through the operation of firms understood as post-constitutional institutional domains. The constitutional contract on the distribution of primary goods and capabilities should then shape the principles of corporate governance so that at post-constitutional level anyone may achieve her/his functionings in the corporate domain by exercising such capabilities. In the absence of such a condition, post-constitutional contracts would distort the process that descends from constitutional rights and capabilities toward social outcomes

    Phospholipase D signaling: orchestration by PIP2 and small GTPases

    Get PDF
    Hydrolysis of phosphatidylcholine by phospholipase D (PLD) leads to the generation of the versatile lipid second messenger, phosphatidic acid (PA), which is involved in fundamental cellular processes, including membrane trafficking, actin cytoskeleton remodeling, cell proliferation and cell survival. PLD activity can be dramatically stimulated by a large number of cell surface receptors and is elaborately regulated by intracellular factors, including protein kinase C isoforms, small GTPases of the ARF, Rho and Ras families and, particularly, by the phosphoinositide, phosphatidylinositol 4,5-bisphosphate (PIP2). PIP2 is well known as substrate for the generation of second messengers by phospholipase C, but is now also understood to recruit and/or activate a variety of actin regulatory proteins, ion channels and other signaling proteins, including PLD, by direct interaction. The synthesis of PIP2 by phosphoinositide 5-kinase (PIP5K) isoforms is tightly regulated by small GTPases and, interestingly, by PA as well, and the concerted formation of PIP2 and PA has been shown to mediate receptor-regulated cellular events. This review highlights the regulation of PLD by membrane receptors, and describes how the close encounter of PLD and PIP5K isoforms with small GTPases permits the execution of specific cellular functions

    The optimization of peptide cargo bound to MHC class I molecules by the peptide-loading complex

    No full text
    Major histocompatibility complex (MHC) class I complexes present peptides from both self and foreign intracellular proteins on the surface of most nucleated cells. The assembled heterotrimeric complexes consist of a polymorphic glycosylated heavy chain, non-polymorphic ÎČ2 microglobulin, and a peptide of typically nine amino acids in length. Assembly of the class I complexes occurs in the endoplasmic reticulum and is assisted by a number of chaperone molecules. A multimolecular unit termed the peptide-loading complex (PLC) is integral to this process. The PLC contains a peptide transporter (transporter associated with antigen processing), a thiooxido-reductase (ERp57), a glycoprotein chaperone (calreticulin), and tapasin, a class I-specific chaperone. We suggest that class I assembly involves a process of optimization where the peptide cargo of the complex is edited by the PLC. Furthermore, this selective peptide loading is biased toward peptides that have a longer off-rate from the assembled complex. We suggest that tapasin is the key chaperone that directs this action of the PLC with secondary contributions from calreticulin and possibly ERp57. We provide a framework model for how this may operate at the molecular level and draw parallels with the proposed mechanism of action of human leukocyte antigen-DM for MHC class II complex optimization
    corecore