42 research outputs found
Bar-Coded Pyrosequencing Reveals the Responses of PBDE-Degrading Microbial Communities to Electron Donor Amendments
Polybrominated diphenyl ethers (PBDEs) can be reductively degraded by microorganisms under anaerobic conditions. However, little is known about the effect of electron donors on microbial communities involved in PBDEs degradation. Here we employed 454 Titanium pyrosequencing to examine the phylogenetic diversity, composition, structure and dynamics of microbial communities from microcosms under the conditions of different electron donor amendments. The community structures in each of the five alternate electron donor enrichments were significantly shifted in comparison with those of the control microcosm. Commonly existing OTUs between the treatment and control consortia increased from 5 to 17 and more than 50% of OTUs increased around 13.7 to 186 times at least in one of the microcosms after 90-days enrichment. Although the microbial communities at different taxonomic levels were significantly changed by different environmental variable groups in redundancy analysis, significant correlations were observed between the microbial communities and PBDE congener profiles. The lesser-brominated PBDE congeners, tri-BDE congener (BDE-32) and hexa-BDE, were identified as the key factors shaping the microbial community structures at OTU level. Some rare populations, including the known dechlorinating bacterium, Dehalobacter, showed significant positive-correlation with the amounts of PBDE congeners in the consortia. The same results were also observed on some unclassified bacteria. These results suggest that PBDEs-degrading microbial communities can be successfully enriched, and their structures and compositions can be manipulated through adjusting the environmental parameters
Living with prostate cancer: randomised controlled trial of a multimodal supportive care intervention for men with prostate cancer
Background: Prostate cancer is the most common male cancer in developed countries and diagnosis and treatment carries with it substantial morbidity and related unmet supportive care needs. These difficulties may be amplified by physical inactivity and obesity. We propose to apply a multimodal intervention approach that targets both unmet supportive care needs and physical activity.Methods/design: A two arm randomised controlled trial will compare usual care to a multimodal supportive care intervention “Living with Prostate Cancer” that will combine self-management with tele-based group peer support. A series of previously validated and reliable self-report measures will be administered to men at four time points: baseline/recruitment (when men are approximately 3-6 months post-diagnosis) and at 3, 6, and 12 months after recruitment and intervention commencement. Social constraints, social support, self-efficacy, group cohesion and therapeutic alliance will be included as potential moderators/mediators of intervention effect. Primary outcomes are unmet supportive care needs and physical activity levels. Secondary outcomes are domain-specific and healthrelated quality of life (QoL); psychological distress; benefit finding; body mass index and waist circumference. Disease variables (e.g. cancer grade, stage) will be assessed through medical and cancer registry records. An economic evaluation will be conducted alongside the randomised trial.Discussion: This study will address a critical but as yet unanswered research question: to identify a populationbased way to reduce unmet supportive care needs; promote regular physical activity; and improve disease-specific and health-related QoL for prostate cancer survivors. The study will also determine the cost-effectiveness of the intervention.<br /
Brf1 loss and not overexpression disrupts tissues homeostasis in the intestine, liver and pancreas
RNA polymerase III (Pol-III) transcribes tRNAs and other small RNAs essential for protein synthesis and cell growth. Pol-III is deregulated during carcinogenesis; however, its role in vivo has not been studied. To address this issue, we manipulated levels of Brf1, a Pol-III transcription factor that is essential for recruitment of Pol-III holoenzyme at tRNA genes in vivo. Knockout of Brf1 led to embryonic lethality at blastocyst stage. In contrast, heterozygous Brf1 mice were viable, fertile and of a normal size. Conditional deletion of Brf1 in gastrointestinal epithelial tissues, intestine, liver and pancreas, was incompatible with organ homeostasis. Deletion of Brf1 in adult intestine and liver induced apoptosis. However, Brf1 heterozygosity neither had gross effects in these epithelia nor did it modify tumorigenesis in the intestine or pancreas. Overexpression of BRF1 rescued the phenotypes of Brf1 deletion in intestine and liver but was unable to initiate tumorigenesis. Thus, Brf1 and Pol-III activity are absolutely essential for normal homeostasis during development and in adult epithelia. However, Brf1 overexpression or heterozygosity are unable to modify tumorigenesis, suggesting a permissive, but not driving role for Brf1 in the development of epithelial cancers of the pancreas and gut