21 research outputs found

    Association Between Rotating Night Shift Work and Risk of Coronary Heart Disease Among Women

    Get PDF
    IMPORTANCE: Prospective studies linking shift work to coronary heart disease (CHD) have been inconsistent and limited by short follow-up. OBJECTIVE: To determine whether rotating night shift work is associated with CHD risk. DESIGN, SETTING, AND PARTICIPANTS: Prospective cohort study of 189,158 initially healthy women followed up over 24 years in the Nurses' Health Studies (NHS [1988-2012]: N = 73,623 and NHS2 [1989-2013]: N = 115,535). EXPOSURES: Lifetime history of rotating night shift work (≄3 night shifts per month in addition to day and evening shifts) at baseline (updated every 2 to 4 years in the NHS2). MAIN OUTCOMES AND MEASURES: Incident CHD; ie, nonfatal myocardial infarction, CHD death, angiogram-confirmed angina pectoris, coronary artery bypass graft surgery, stents, and angioplasty. RESULTS: During follow-up, 7303 incident CHD cases occurred in the NHS (mean age at baseline, 54.5 years) and 3519 in the NHS2 (mean age, 34.8 years). In multivariable-adjusted Cox proportional hazards models, increasing years of baseline rotating night shift work was associated with significantly higher CHD risk in both cohorts. In the NHS, the association between duration of shift work and CHD was stronger in the first half of follow-up than in the second half (P=.02 for interaction), suggesting waning risk after cessation of shift work. Longer time since quitting shift work was associated with decreased CHD risk among ever shift workers in the NHS2 (P<.001 for trend). [table: see text] CONCLUSIONS AND RELEVANCE: Among women who worked as registered nurses, longer duration of rotating night shift work was associated with a statistically significant but small absolute increase in CHD risk. Further research is needed to explore whether the association is related to specific work hours and individual characteristics

    Anaphylaxis to hyperallergenic functional foods

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Food allergy can cause life threatening reactions. Currently, patients with severe food allergy are advised to avoid foods which provoke allergic reactions. This has become increasingly difficult as food proteins are being added to a broader range of consumer products.</p> <p>Patients and methods</p> <p>Here we describe our investigations into the allergenicity of a new drink when two cow's milk allergic children suffered anaphylaxis after consuming <it>Wh</it><sub><it>2</it></sub><it>ole</it><sup>Âź</sup>.</p> <p>Results</p> <p>Our studies have shown that in comparison with cow's milk, <it>Wh</it><sub><it>2</it></sub><it>ole</it><sup>Âź </sup>contains at least three times the concentration of ÎČ-lactoglobulin. ÎČ-lactoglobulin is one of the dominant allergens in bovine milk.</p> <p>Conclusions</p> <p>These studies have shown that modern technology allows the creation of "hyperallergenic" foods. These products have the potential to cause severe reactions in milk allergic persons. Avoiding inadvertent exposure is the shared responsibility of allergic consumers, regulatory authorities and the food industry.</p

    Model SNP development for complex genomes based on hexaploid oat using high-throughput 454 sequencing technology

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genetic markers are pivotal to modern genomics research; however, discovery and genotyping of molecular markers in oat has been hindered by the size and complexity of the genome, and by a scarcity of sequence data. The purpose of this study was to generate oat expressed sequence tag (EST) information, develop a bioinformatics pipeline for SNP discovery, and establish a method for rapid, cost-effective, and straightforward genotyping of SNP markers in complex polyploid genomes such as oat.</p> <p>Results</p> <p>Based on cDNA libraries of four cultivated oat genotypes, approximately 127,000 contigs were assembled from approximately one million Roche 454 sequence reads. Contigs were filtered through a novel bioinformatics pipeline to eliminate ambiguous polymorphism caused by subgenome homology, and 96 <it>in silico </it>SNPs were selected from 9,448 candidate loci for validation using high-resolution melting (HRM) analysis. Of these, 52 (54%) were polymorphic between parents of the Ogle1040 × TAM O-301 (OT) mapping population, with 48 segregating as single Mendelian loci, and 44 being placed on the existing OT linkage map. Ogle and TAM amplicons from 12 primers were sequenced for SNP validation, revealing complex polymorphism in seven amplicons but general sequence conservation within SNP loci. Whole-amplicon interrogation with HRM revealed insertions, deletions, and heterozygotes in secondary oat germplasm pools, generating multiple alleles at some primer targets. To validate marker utility, 36 SNP assays were used to evaluate the genetic diversity of 34 diverse oat genotypes. Dendrogram clusters corresponded generally to known genome composition and genetic ancestry.</p> <p>Conclusions</p> <p>The high-throughput SNP discovery pipeline presented here is a rapid and effective method for identification of polymorphic SNP alleles in the oat genome. The current-generation HRM system is a simple and highly-informative platform for SNP genotyping. These techniques provide a model for SNP discovery and genotyping in other species with complex and poorly-characterized genomes.</p

    Traditional Mapuche ecological knowledge in Patagonia, Argentina: fishes and other living beings inhabiting continental waters, as a reflection of processes of change

    Full text link

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    corecore