24 research outputs found

    Displacement Behaviour Is Associated with Reduced Stress Levels among Men but Not Women

    Get PDF
    Sex differences in the ability to cope with stress may contribute to the higher prevalence of stress-related disorders among women compared to men. We recently provided evidence that displacement behaviour--activities such as scratching and face touching--represents an important strategy for coping with stressful situations: in a healthy population of men, displacement behaviour during a social stress test attenuated the relationship between anxiety experienced prior to this test, and the subsequent self-reported experience of stress. Here, we extend this work to look at physiological and cognitive (in addition to self-reported) measures of stress, and study both men and women in order to investigate whether sex moderates the link between displacement behaviour and the response to stress. In a healthy study population, we quantified displacement behaviour, heart rate and cognitive performance during the Trier Social Stress Test, and used self-report questionnaires to assess the experience of stress afterwards. Men engaged in displacement behaviour about twice as often as women, and subsequently reported lower levels of stress. Bivariate correlations revealed that for men, higher rates of displacement behaviour were associated with decreased self-reported stress, fewer mistakes in the cognitive task and a trend towards lower heart rate; no relationships between displacement behaviour and stress measures were found for women. Moreover, moderation analyses revealed that high rates of displacement behaviour were associated with lower stress levels in men but not in women, and that high displacement behaviour rates were associated with poorer cognitive performance in women, but not men. These results point to an important sex difference in coping strategies, and highlight new avenues for research into sex biases in stress-related disorders

    B-lineage transcription factors and cooperating gene lesions required for leukemia development

    No full text
    Contains fulltext : 118045.pdf (publisher's version ) (Closed access)Differentiation of hematopoietic stem cells into B lymphocytes requires the concerted action of specific transcription factors, such as RUNX1, IKZF1, E2A, EBF1 and PAX5. As key determinants of normal B-cell development, B-lineage transcription factors are frequently deregulated in hematological malignancies, such as B-cell precursor acute lymphoblastic leukemia (BCP-ALL), and affected by either chromosomal translocations, gene deletions or point mutations. However, genetic aberrations in this developmental pathway are generally insufficient to induce BCP-ALL, and often complemented by genetic defects in cytokine receptors and tyrosine kinases (IL-7Ralpha, CRLF2, JAK2 and c-ABL1), transcriptional cofactors (TBL1XR1, CBP and BTG1), as well as the regulatory pathways that mediate cell-cycle control (pRB and INK4A/B). Here we provide a detailed overview of the genetic pathways that interact with these B-lineage specification factors, and describe how mutations affecting these master regulators together with cooperating lesions drive leukemia development
    corecore